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 Expected Returns in Treasury Bonds
 Anna Cieslak

 Kellogg School of Management, Northwestern University

 Pavol Povala

 University or London, Birkbeck College

 We study risk premium in U.S. Treasury bonds. We decompose Treasury yields into inflation

 expectations and maturity-specific interest-rate cycles, which we define as variation in

 yields orthogonal to expected inflation. The short-maturity cycle captures the real short
 rate dynamics. Jointly with expected inflation, it comprises the expectations hypothesis
 (EH) term in the yield curve. Controlling for the EH term, we extract a measure of risk

 premium variation from yields. The risk-premium factor forecasts excess bond returns in
 and out of sample and subsumes the common bond return predictor obtained as a linear
 combination of forward rates. (JEL E43, G12)

 We study the time variation in the risk premium that investors require for
 holding Treasury bonds. We propose a novel way of decomposing the nominal
 yield curve into the risk-premium component and the expectations hypothesis
 (EH) term (i.e., the average expected short-term interestrate that investor expect

 to prevail during the life of a bond). Specifically, we decompose Treasury yields
 into inflation expectations and maturity-specific interest-rate cycles, which we

 define as the variation in yields that is orthogonal to expected inflation. The
 short-maturity cycle captures the dynamics of the real short rate at the business

 cycle frequency. Jointly with expected inflation, it comprises the EH term in the
 yield curve. Controlling for the EH term, allows us to extract a measure of the
 Treasury risk premium from yields. This intuition underlies our construction
 of the bond return forecasting factor, which we label as the cycle factor and
 which is our empirical proxy for the time-varying risk premium in Treasuries.
 The cycle factor is uncorrelated with short-rate expectations; it predicts returns
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 on Treasury bonds across the entire maturity spectrum and constitutes the least
 persistent source of variation in the yield curve. Further, it implies that risk
 premiums in Treasury bonds vary at a frequency higher than the business-cycle
 frequency.

 Our results are related to the bond return predictor commonly used in the
 literature—the Cochrane-Piazzesi factor. Cochrane and Piazzesi (2005, CP)
 demonstrate that a single linear combination of forward rates forecasts bond
 excess returns at different maturities. We show that the cycle factor subsumes
 and improves upon the predictability obtained with the linear combination of
 yields or forward rates. Our approach allows us to predict bond excess returns
 not only in sample but also out of sample, and thus it can be used in real
 time analysis. At the same time, it avoids the known statistical problems that
 arise when using linear combinations of multiple forward rates, such as the
 sensitivity to a small measurement error.

 The economic basis for our decomposition is the premise that the short
 term nominal interest rate is (to a very good approximation) a sum of expected
 inflation and the real short rate. Building on a large body of literature, we note
 that highly persistent expected inflation dynamics, often referred to as trend
 inflation, determines the level of interest rates in the long run and across matu

 rities (e.g., Kozicki and Tinsley 2001; Rudebusch and Wu 2008; Bekaert, Cho,
 and Moreno 2010). We rely on a simple real-time measure of trend inflation—a
 discounted moving average (DMA) of past core inflation—which reflects that
 people update their inflation expectations sluggishly over time. We show that
 this variable indeed forecasts future inflation well, especially at horizons above
 one year. The one-period cycle, in turn, encapsulates the mean-reverting part
 of the short rate around trend inflation and is related to the fluctuations in the

 real rate. We document that it forecasts changes in the future short rate several
 years ahead. Neither trend inflation nor the one-period cycle have predictive
 power for future bond excess returns, and thus, they represent the variation in
 expectations of the short rate that is independent of the risk premium.

 These results allow us to summarize the dynamics of the yield curve across
 maturities with three observable factors. Trend inflation accounts for about

 85% of unconditional variance of yields, determining their overall level. The
 one-period cycle (real factor) captures more than 60% of the movements in
 the yield curve slope (i.e., the difference between the long- and the short-term
 interest rate). Finally, although the cycle factor constitutes the smallest portion

 of yields' variance, its contribution increases with the maturity, consistent with

 the intuition that long-maturity yields are most exposed to the fluctuations in
 the risk premium. Jointly, those three variables explain more than 99% of yield
 curve variation across maturities. Whereas most modern term-structure models

 describe yields in terms of principal components (level, slope, and curvature),
 our decomposition characterizes the yield curve in terms of variables that have
 a direct link to economic quantities: expected inflation, the real rate, and the
 risk premium.
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 Expected Returns in Treasury Bonds

 We study whether our findings present a robust feature of Treasury yields.
 We show that our predictability results are not spuriously driven by the well
 known biases in the EH tests that arise when working with highly persistent
 regressors (Bekaert, Hodrick, and Marshall 1997). Nor are they specific to the
 DMA with which we measure trend inflation. Using survey-based expectations
 of inflation from a variety of sources, we consistently find that controlling for

 expected inflation in predictive regressions of bond excess returns strengthens
 the return predictability relative to the yields-only approach. We document that

 our way of controlling for the EH term diminishes the sensitivity of the risk
 premium estimates to the measurement error in yields. Although most of our
 analysis relies on data starting in 1971, when bonds with maturities of 10 years
 and above become available, we also reproduce our main conclusions over
 a long sample period, 1952-2011, using the longest existing inflation survey
 from Livingston, as well as the Fama-Bliss zero-coupon yields with maturities
 of 1 through 5 years. Additionally, we obtain direct survey-based measures of
 the risk premium using professional forecasts of interest rates and document
 their strong positive correlation with the cycle factor.

 1. Illustrative Term-Structure Model

 The yield of an n-period nominal Treasury bond can be expressed as the average

 future short rate yj 11 expected over the life of the bond, which we refer to as

 the expectations hypothesis (EH) term, plus the term premium, rpy^n):

 1 H~ 1
 (n) 1 Z7 (!) , (") n\ y, =~E,2^y)^+rpy) '. (1)

 n ;=o

 EH term

 The term premium is the sum of expected future excess bond returns, rpy\n) =

 ~-2rx'^y'l ), where Et(rx"+\ ) is the expected one-period excess return, *7+1 + 1 J> vvl"-iv- ^tv ■*,+1

 or the risk premium, on an n-period bond, and

 rx^=-(n-\)y%-X)+ny\n)-y?\ (2)
 Our goal is to decompose the yield curve into the EH component and the term
 premium in order to study the variation in the Treasury risk compensation, and
 relatedly, the predictability of bond excess returns.

 We illustrate the intuition behind our approach with a stylized term-structure

 model, which, despite its simplicity, captures the key properties of yield curve
 dynamics that we document in the data that follows. We assume that nominal
 yields are driven by three state variables : trend inflation xt, the real factor r,, and

 the price-of-risk factor x,. Trend inflation follows a first-order autoregressive

 process:

 T,-pr+(t)TXt-\+aTeTt. (3)

 2861
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 Realized inflation tc,+\ is given by trend inflation plus noise: nt+\ -r, +£f+1.
 Thus, r, = E,(7t,+\) is expected inflation. We assume that sf+l is uncorrelated
 with other shocks in the economy, implying that the one-period nominal bond
 is riskless.1 The nominal one-period interest rate is a function of r, and r,:

 -So+8zr,+8rr,, (4)

 with Sz > 0,5, > 0, where r, evolves as:

 rt = ßr+(t>rrt^+arert. (5)
 The real factor rt can be interpreted as capturing the variation in the real
 short rate that is independent of the trend inflation, with e] ,ert uncorrelated
 with each other. If <5o=0,<5r=<5r = l, then r, equals the ex-ante real rate,

 r" := y,' ' ' — r,. If ST > 1 and 8r = 1, as when the Fed reacts more than one for one

 to expected inflation (e.g., Clarida, Gall, and Gertler 2000), the ex-ante real rate
 r"=(8z — l)rt+rt, loads on both z, and r,. Notice that in this setting, the EH
 component in the yield curve is entirely determined by the trend inflation and the
 real rate factors. The price-of-risk factor follows an independent autoregressive
 process:

 x,=nx+4>xXt-i +oxext. (6)
 Letting Ft = (r, , rt, x, )', we can write the dynamics of the state and the short rate

 compactly as:

 F, = /u+4>F,_i + E£r (7)

 yll) = S0+S[F„ (8)
 with <t> and E diagonal, 5] =(5r,Sr,0)', and £t = (ezt ,ert ,e*}'. Bonds are priced
 by no arbitrage with the log of the nominal stochastic discount factor:

 mi+i=— y,(l) — 0.5AJA, —Aje,+i, (9)
 where A, is the compensation investors require for facing shocks £(+i:

 Ar = E-'ao + Ai Ft). (10)
 Thus, the parameters of the risk-neutral dynamics used for pricing bonds are:

 pq=p-\ o, 4>« = <D-Al. (11)

 Log bond prices p',"' and yields y\n) are affine in the state vector, y"1 =

 p^=An+ß'nFt, and y}"1 = An + B'n F,, (12)

 A„ = --A„, B„ = --ß„, (13)
 n n

 where coefficients A„ and ß„ have standard recursive solutions as a function
 of p,q ,$q, E,<5q, and 3i (e.g., Duffee 2012), with A\ =— <5o and ß\ =— <5i.

 The literature on the short-run Fisher hypothesis concludes that the role of term premium variation in short-term
 nominal yields is negligible (e.g. Shome, Smith, and Pinkerton 1988; Evans and Wachtel 1992; Crowder and
 Hoffman 1996).
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 Expected Returns in Treasury Bonds

 Suppose that investors require compensation for facing shocks to trend
 inflation and the real factor, and that bond risk premiums at all maturities vary

 with a single factor xt, whose own shocks are not priced. This implies:

 (14)

 Specification in Equation (14) mirrors the empirical finding of Cochrane and
 Piazzesi (2005) that bond risk premiums move on a single mean-revering
 factor that is largely unexplained by the level, slope, and curvature movements
 described by most term-structure models.2 The excess bond log return earned
 over one period is:

 /■^)i=g:_i(Ao + Ail3)jc(-0.5g:_1£S,BH-i+B:-iEet+i, (15)

 where I3 is 3 x 1 vector of ones. The first two terms on the right-hand side of

 Equation (15) describe the risk premium, Et(rx^x), earned in compensation
 for £rr+1 and e[+1 shocks, plus a convexity adjustment. Note that, with a single

 factor driving market prices of risk, term premium rpy, defined in Equation

 (1) is perfectly correlated with the bond risk premium Et(r:
 The dynamics in Equations (3)-(6) along with specification in Equation (14)

 lead to tractable expressions for loadings of log bond prices p^ on the state
 vector F, :

 1-0" 1-0"

 1-0T 1 0r

 Bxn = -Bl^Xxx-B'n_x\rx+B*n_x<t>*, (16)

 and yields yt'l>\

 (B;,Brn,B*J = -kBlBrn,B*ny, (17)

 which allows us to understand how different factors affect the yield curve across
 maturities.

 This illustrative setting accommodates several features of inflation and
 interest rate dynamics documented in the literature. Suppose that the state
 variables differ in their relative persistence, with trend inflation r, being more

 Models with a single source of variation in the price of risk and only a subset of shocks that are priced have been
 studied, for instance, by Cochrane and Piazzesi (2008), Lettau and Wächter (2011), Campbell, Sunderam, and
 Viceira (2011), Ang, Bekaert, and Wei (2008). In these models, the price of risk is assumed to follow a univariate
 process that is independent of other state variables, except in Cochrane and Piazzesi (2008) where it is part of
 an unrestricted VAR.
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 persistent as compared with the real factor r,. A highly persistent trend inflation

 is consistent with the properties of expected inflation in surveys, as well as with
 the estimates in the literature (Kozicki and Tinsley 2001; Rudebusch and Wu
 2008; Bekaert, Cho, and Moreno 2010). With (pi < 1 but close to unity, loadings
 of yields on zt, Bx, decline slowly with maturity n, generating a level effect in
 the yield curve. A lower persistence of r, than that of r, lines up with the evidence

 that variation in the real rate has the most pronounced contribution to yields
 at short maturities (Ang, Bekaert, and Wei 2008; Fama 1990; Ireland 1996).
 Indeed, if 0r < 0r, then Brn declines with n faster than Bxn does, thus affecting
 the slope of the yield curve. Finally, the effect of the price-of-risk factor x,
 depends on the signs and magnitudes of xTX and Xrx and the persistence of xt,
 (f>x > 0. One can expect that a positive shock to trend inflation increases the
 conditional bond risk premium on nominal bonds in Equation (15), suggesting
 that Xrx < 0 (because Bln < 0). The sign of Xrx is intuitively harder to assess
 because the properties of the real rate remain debated (e.g., Campbell 2006).
 In the restrictive case, where Xrx <0 and Xrx=0, loadings B* increase with
 the maturity, and the effect of the risk premium variation is the largest for the
 long-maturity bonds.

 It is useful to define, within the model, the component of the nominal yield
 curve that is orthogonal to trend inflation:

 c^ = Brnrt + Bxnxt, (18)

 which we refer to as the "cycle." The composition of c\n) changes with maturity.

 From Equation (4), the one-period cycle, cj1' =Srrt, reflects the variation in the
 real factor r, but not in the price of risk, x,. For economically plausible price
 of-risk parameters, however, the relative contribution of the price-of-risk factor
 to the cycles' variance can be expected to increase with maturity. We verify this
 in subsequent sections when we take the intuition from the model to the data.

 2. Data and Methodology

 2.1 Data sources

 We use end-of-month constant maturity Treasury (CMT) yields from the H.15
 statistical release of the Federal Reserve, from November 1971 to December

 2011, from which we bootstrap the zero-coupon yield curve. The CMT data
 comprise maturities of 6 months and 1, 2, 3, 5, 7, 10 and 20 years, which
 allows us to incorporate long maturities into the analysis. Our sample starts
 when bonds with maturities of 10 years and above become available.3

 We bootstrap the zero-coupon yield curve by treating the CMT yields as par yields (see the Treasury website for
 details on the CMT yields). In the Online Appendix, we compare our realized excess bond returns with other data
 sets used in the literature (Fama-Bliss data and Gürkaynak, Sack, and Wright (2006, GSW)) showing correlation
 above 0.99 for returns at corresponding maturities. Our empirical results are robust to the splining procedure
 used to construct zero-coupon yields, as shown in the Online Appendix.

 2864

This content downloaded from 90.210.166.158 on Sat, 12 Oct 2019 17:34:27 UTC
All use subject to https://about.jstor.org/terms



 Expected Returns in Treasury Bonds

 Inflation is from the FRED database. We use Consumer Price Index (CPI)
 inflation which is not subject to revisions (Croushore and Stark 1999), and thus

 can be treated as real-time data. To account for the publication lag (inflation
 for a given month is released in the middle of the following month), we use the
 CPI data that are publicly available at the month's end.

 2.2 Measuring trend inflation
 We rely on a simple measure of trend inflation which, together with the
 assumption that the nominal short rate carries no risk premium, allows us to
 identify factors driving the short rate. In particular, we construct a DMA of past
 CPI inflation:

 r-l

 rfcp/=(l-t0^i/jr,_i, (19)
 ;=o

 with the year-over-year inflation, n, = \n~y'—, and monthly sampling. This
 approach follows the literature using constant-gain learning to explain
 macroeconomic dynamics, and inflation dynamics in particular (e.g., Sargent
 1999; Kozicki andTinsley 2001,2005; Orphanides and Williams 2005; Branch
 and Evans 2006). Indeed, Equation (19) can be expressed as a constant
 gain recursion, r(CF/ = r,^7 + (1 — v)(jz, — r7!7''), capturing the idea that agents

 update inflation sluggishly over time.4 We truncate the sum in Equation (19)
 at iV =120 months and calibrate the v parameters to inflation survey data at
 u = 0.987 (in monthly updating terms), which is well within the range of values
 between 0.974 to 0.995 considered in the literature. A sensitivity analysis
 shows that varying N between 100 and 150 months and v between 0.975 and
 0.995 leads to very small quantitative differences in our subsequent results.
 Calibration details, robustness checks, and review of gain parameters used by
 various authors are contained in the Online Appendix. The Appendix also shows
 that our results do not depend on using year-over-year, quarterly or monthly
 inflation.

 For the main part of our analysis, we use the core CPI to construct r(CP7
 because core inflation is the measure that bond investors and monetary policy
 makers focus on (e.g., Blinder and Reis 2005; Mishkin 2007).5 As an additional
 check, we verify that our conclusions remain robust to all-items CPI in
 Section 6.1.

 Figure 1, Panel A, superimposes the 1- and 10-year yield with r,CP/,
 showing that r(c '' ' coincides with the low-frequency movement in interest

 Constant gain learning can be shown to provide maximally robust optimal prediction rule in the presence of
 structural breaks and when investors are uncertain about the true data generating process, as is likely the case
 when forecasting inflation (Evans, Honkapohja, and Williams 2010).

 The FRB website reads, "(•••) policymakers examine a variety of 'core' inflation measures to help identify
 inflation trends. (...) Although food and energy make up an important part of the budget for most households—
 and policymakers ultimately seek to stabilize overall consumer prices—core inflation measures that leave out
 items with volatile prices can be useful in assessing inflation trends."

 2865

This content downloaded from 90.210.166.158 on Sat, 12 Oct 2019 17:34:27 UTC
All use subject to https://about.jstor.org/terms



 The Review of Financial Studies / v 28 n 10 2015

 Yields and trend inflation

 1970 1980 1990 2000 2010

 Core CPI and long-term expectations (target)

 Core CPI inflation y-o-y
 FBR/US model (5-10Y)

 1970 1980 1990 2000 2010

 Figure 1
 Measuring trend inflation, rfPI

 Panel A superimposes the 1- and 10-year yield with the DMA of past core CPI inflation, xfPI. if PI is fitted to
 the average level of yields across maturities (slope coefficient of 1.28). Panel B plots the realized year-on-year

 core CPI inflation together with zfPI, and the long-term (5-10 years ahead) inflation expectations used in the
 Federal Reserve Board's FRB/US model.

 2866
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 rates. Panel B indicates that xfPI comoves closely with inflation expectations
 (perceived inflation target) underlying the Federal Reserve Board's FRB/US
 model (Brayton and Tinsley 1996; Clark and Nakata 2008).6 Expectations in
 the FRB/US model are compiled from several sources with irregular frequency
 and need to be interpolated to a monthly frequency. The advantage of Equation
 (19) is its simplicity and that it can be constructed in real time.

 2.3 Identifying interest-rate cycles
 Turning to the role of trend inflation in the cross section of yields, Panel A of
 Table 1 reports the estimates from projecting yields with different maturities

 CP I
 on :

 y\n)=an+bxnz^PI +st. (20)
 The single variable explains between 71% and 89% of yield variance, and its
 explanatory power is stronger at long maturities. The regression coefficient bxn
 is 1.43 (t-stat = 8.6) at the 1-year maturity and 1.13 (t-stat = 14.9) at the 20-year

 maturity, indicating that trend inflation drives the level of the yield curve. The

 loading above one for the 1-year yield aligns with the estimates of the forward

 looking Taylor rules in the literature, suggesting that the Fed responds more
 than one for one to expected inflation (e.g., Coibion and Gorodnichenko 2011;
 Orphanides 2004).

 We define the residual from Regression (20) as the maturity-specific cycle:

 c^ = y^-an-Pn^PI, (21)
 (i.e., the component of a yield with given maturity that is orthogonal to trend

 inflation). Notice that c\ 1 ' encapsulates empirically the variation in the real
 factor r, in our model from Section 1. We refer to such residuals as "cycles,"
 to indicate that they are less persistent than yields are. Panel B of Table 1

 summarizes their properties. The 1-year cycle c{ ' ' is most persistent with a

 half-life of about 15 months,7 compared with the ten-year cycle ct whose
 half-life is less than a year. At the same time, the half-lives of yield levels are
 all above 5 years. Cycles of different maturities are relatively highly correlated
 with each other but less so than yields are. The lowest correlation is 0.55

 between c,' ' and c,(20), whereas it is 0.89 between y\'1 and y,'20'.

 2.4 Notation

 Our empirical approach relies on predictive regressions of bond excess returns.
 We focus on 1-year holding-period bond excess returns and relegate the analysis

 6 The FRB/US series splices data from two surveys of expected long-run inflation—the Hoey survey of financial
 market participants from 1981 through 1989 and the Survey of Professional Forecasters from 1990. We thank
 Sharon Kozicki for sharing the series with us. The sample ends in August 2005.

 Throughout the paper, the half-life is defined as ln(0.5)/ln(|^z|), where Vz is the estimated first-order
 autoregressive coefficient for a given variable zt •
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 Table 1

 Properties of interest-rate cycles

 A. Regressions of yields on rf1  (") «r
 yt =an+bTnx  CPI+et

 yf  yf  yf  yf  >,(10)
 (15)

 yt  y^^
 u„ x 100  -0.35  0 12  0.68  1 09  1 43  1 97

 (  -0.45)  (-0.17)  (1.47)  (2.87)  (4.66)  (7.44)  (8.91)

 K  1.44  1.37  1.32  1.20  1.13

 (8.64)  (10.31)  (13.06)  (14.58)  (15.98)  (16.26)  (14.93)
 p  0.71  0.77  0.84  0.86  0.88  0.89  0.86

 B. Properties of cycles: = y^
 a.

 1 «3 1

 c(1) ct  cm ct  -!5)  47)
 (10)

 ci  c!,5)
 (20)

 Ct

 Correlations

 of 1.00
 2  0.98  1.00

 45)  0.89  0.95  1.00  wmm
 c<7)  0.82  0.90  0.99  1.00

 0.74  0.83  0.95  0.98  1.00  mm
 0.62  0.72  0.88  0.93  0.98  1.00

 ,20,
 0.55  0.64  0.80  0.87  0.90  0.96  LOO

 St.dev.x 100  1.74  1.50  1.14  1.01  0.88  0.81  0.85

 Half-life (months)  15.07  14.00  10.75  9.81  9.34  8.72  8.83

 Yields:  yf  »<2)  »<5)  yf  *<10)  yr  ym
 St.dev.x 100  3.23  3.13  2.84  2.71  2.59  2.43  2.31

 Half-life (months)  67.18  84.35  92.34  97.61  107.75  98.71  79.53

 Panel A presents univariate regressions of yields on rfPI, as in Equation (20). T-statistics in parentheses are
 Newey-West adjusted with 18 lags. Panel B reports unconditional correlations between cycles of different
 maturities, as well as standard deviations and half-lives of cycles. The half-life is defined as ln(0.5)/ln(|^z|),
 where \j/z is the estimated first-order autoregressive coefficient for a given variable zt.

 of other holding periods to the Online Appendix. In predictive regressions, we

 use monthly overlapping data and measure time in years. Thus, defined
 in Equation (2) is a I-year holding-period excess return on a n-year zero
 coupon bond, p," ' is the log bond price, p,"' = —nyf\ and the 1-year forward

 rate locked in for the time between t+n — l and t+n is //"' = p'" '' — p\"1.
 Our sample has 470 monthly observations: the last observation is the return
 realized in December 2011, and it is predicted with variables observed until
 December 2010. On several occasions, we take an average of excess returns
 across maturities, denoted by rx,+Because the volatility of returns scales
 proportionally with bond duration, we duration standardize returns to avoid

 overweighting particular maturities (i.e., rxt+\ = -L Y?k=zrxf+\/^)- Our results 19 L^k=2' -*7+1/

 are not sensitive to this convention, and working with simple averages would
 not change our conclusions. The Online Appendix reports descriptive statistics
 for excess returns. Unless the context is unclear, we do not introduce separate

 notation for yields y"' and cycles c\n) from the affine model in Section 1 and
 the data.
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 2.5 Accounting for small-sample biases
 Predictive regressions of returns are plagued by small sample biases. We
 consider these biases in two ways. First, we rely on conservative standard errors

 from reverse regressions proposed by Hodrick (1992) and extended by Wei and
 Wright (2013). To remove the overlap in the error term, this approach exploits
 the covariance of one-period returns with an h -period sum of the predictor
 (h-12 for monthly data and annual returns). Ang and Bekaert (2007) show
 reverse regressions standard errors to have superior small-sample properties
 compared with the commonly used Hansen-Hodrick or Newey-West errors,
 both of which overreject the null hypothesis of no predictability in small
 samples.8

 Second, because of the bias stemming from highly persistent interest rates,
 predictive R2' s from regression-based tests of the EH are known to overstate the

 true degree of predictability (Bekaert, Hodrick, and Marshall 1997). Therefore,
 we obtain a small sample distribution of R2,s under the null of EH (i.e., where
 the true R2 is zero). Using the model in Section 1, we simulate yields at the
 monthly frequency (T =470 months) and construct annual excess returns under
 the assumption that risk premiums are zero (i.e., À0 = 0, Ai =0). We allow for
 different levels of persistence of the trend inflation r, {(f>x - {0.8,0.975,0.999})

 and the real factor r, (cpr - {0.6,0.75,0.9}). We calibrate the other parameters of
 xt and rt as follows: Using Regression (20) for the 1-year yield (n -1 ), we set
 5o = 0,8r = 1.43 and Sr = 1. For each level of persistence, factor volatilities err and

 ar are calibrated to match the unconditional standard deviation of r(c p 1 equal to

 1.90%, and the unconditional standard deviation of the 1 -year cycle, c\1}, equal

 to 1.74%, respectively. Using simulated data, we then run predictive regressions
 of excess returns on trend inflation and the real factor. The 95th quantile of the

 distribution of adjusted R2,s (R2's) from these regressions ranges from 19% to
 23% across different parameter configurations. Thus, even under the EH, one
 can expect to obtain meaningful predictive R2. Details of the R2 distributions
 are reported in the bottom panel of Table 2, and we use them as a benchmark
 to evaluate the R2 obtained in the data in the next section.

 3. Main Empirical Result

 3.1 Predictive regressions
 This section presents predictive regressions of bond excess returns. The
 estimates are collected in Table 2. We use the average return rxt+\ as the
 left-hand-side variable and report results for specific maturities in subsequent
 tables.

 Wei and Wright (2013) extend the reverse regressions proposed by Hodrick (1992) beyond testing the null
 hypothesis of no predictability and allowing for highly persistent regressors. We follow their reverse regression
 delta method, which they show to deliver superior results in situations when return predictability can be large.
 The 1-month excess returns on bonds, needed for this procedure, are obtained as in Campbell and Shiller (1991),

 by approximating the log price of a {n — l/12)-maturity bond as — in —1/12)y\n\
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 Consider the standard forecasting regression of excess returns on multiple
 yields, which we call the yields-only regression (Column (1) of Table 2):

 rxt+i =^o+y~y/y,("+g,+i (22)
 i

 p-value Wald test=0.05; R2 = 0.24.

 Yield maturities used as regressors are 1,2, 5, 7, 10 and 20 years. Estimating
 Regression (22) on forward rates, as in Cochrane and Piazzesi (2005,2008), or
 adding other maturities gives essentially identical results. The Wald test for the
 joint significance of the regression coefficients rejects the EH at the 5% level,
 and the regression R2 is 0.24. The results are similar if we regress T3c,+i on

 the average yield y, - ^ ' and the 1-year yield y,' ', as in Column (3) of
 Table 2, giving a p-value of 0.04 and an R2 of 0.18.

 The evidence in favor of time-varying risk premiums strengthens when we
 augment the yields-only regression with our measure of trend inflation, rtcpl.
 We label this regression as yields-plus-zfp' (Column (2) of Table 2):

 rxt+1 + r(C/>/+£f+i (23)
 ' -1.02

 (-4.30)

 p-value Wald test=0.00; R2 = 0.54.

 The variable xfpl is highly statistically significant, and the R2 doubles
 compared with the yields-only case.

 Concerns that arise in regressions using multiple yields are overfitting
 and multicollinearity. Indicative of the latter, in Columns ( 1 )—(2) of Table
 2 coefficients are jointly highly significant but insignificant individually.
 However, it turns out that one can simplify Regression (23) without losing
 the predictive power:

 rxt+i =d0+^di^y,+ y,(1)+ jd^ r,CPI+st+] (24)
 1.45 -0.61 -1.01
 (5.03) (-3.70) (-4.65)

 p-value Wald test=0.00; ft2 = 0.53.

 Importantly, the entire predictive content of the regression comes from a
 component in yields that is orthogonal to trend inflation xfp '. To see this,
 consider predicting returns with the cycles defined in Equation (21):

 rxt+\=Yo+ Vi c,+ Y2 cr(1)+e,+i (25)
 1.45 -0.61
 (5.03) (-3.67)

 p-value Wald test=0.00; R2=0.53,

 where c, = 2, ^f2c,(,,.The predictive power remains unchanged compared with
 (24).
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 Table 2

 Predictive regressions

 A. Predictive regressions

 Regressors ->  Yields only  Yields+rCP/  (1) rpi
 yt,yt

 (1)  (2)  (3)  (4)  (5)

 Regression coefficients

 y<'W»  -1.13  -1.09  -0.42  -0.61  -0.61

 (-1.87)  (-1.64)  (-2.48)  (-3.70)  (-3.67)

 j,(21 orc(2)  0.73  1.06  —  -

 (0.62)  (0.81)  -  -  -

 or c<5>  0.83  -0.71  _  -  -

 (0.99)  (-0.10)  -  -  -

 yU) 0r(.<7)  0.40  0.51  —  —  -

 (0.15) (0.32)  -  -

 y('0) orf(I0) -1.15  0.84  _  -

 (-1.69)  (0.43)  -  -

 y(20) or c>(20) 0.37 0.21 _  -

 (0.94) (0.49) -  -  -

 TCPl  _  -1,02  -1.01  -

 -  (-4.30)  -  (-4.65)
 y or c  _  —•  0.54  1.45  1.45

 -  -  (2.47) (5.03)  (5.03)

 Regression statistics

 R2  0.24  0.54  0.18  0.53  0.53

 Wald test  12.34  34.86  6.46  28.61  25.34

 pval  0.05  0.00  0.04  0.00  0.00

 Rel.prob. (BIC)  0  3e-4  0  0.57  1.00

 B. Distribution of predictive R2 under EH, T=470 months

 (pr = 0.75  (pr =0.975

 oo © II  <p T =0.975  (pr =0.999  (pr =0.6  <pr =0.75  ;e  II  o  50

 P5 0.00  0.01  0.01  0.01  0.01  0.01

 P95 0.19  0.23  0.20  0.22  0.22  0.23

 In panel A, the LHS variable is a duration-standardized excess bond return averaged across maturities, rxt+\.

 Columns ( 1 ) through (5) use different regressors: ( 1 ) six yields; (2) same yields as in ( 1 ) plus trend inflation rfpl\

 (3) two yield variables: y J1J and yt ; (4) y\1 ) and yt plus zfPI ; (5) two cycle variables: c\1 ) and the average cycle ct.
 T-statistics for individual coefficients, the Wald test and the corresponding p-values are obtained using the reverse
 regression delta method. Row labeled "Rel.prob. (BIC)", where BIC is the Bayesian information criterion, gives

 the relative probability of a model / computed as exp{(ß/CjjeSt — BICj)T/2), where £/C = ln(<r2)+ln(r)n/7\

 n is the number of regressors, a^ = SSE/T of the regression, and T is the sample size. Relative probability
 of one indicates the best model selected by a given criterion. Relative probability of zero means that a given
 model has zero probability to explain the data equally well as the best model. Panel B reports the 5th and 95th
 percentiles of the R2 obtained under the null of EH from 10,000 Monte Carlo simulations of the model in
 Section 1. The parameters are <$o=0'<$r = 1 -43,8r = 1, and ox,or are calibrated to match st.dev.(i>)= 1.90% and
 st.dev.(/v)= 1.74% at each level of persistence of (px ,4>r

 The R- from the yields-plus-r, or cycles regressions increase visibly
 relative to those obtained only with yields. However, these numbers should
 be compared to the R2's that arise under the null of the EH (Panel B of
 Table 2). Except for the regression in Column (3), all specifications produce
 R2,s that are above the maximum 95th quantile under EH (0.23), albeit
 the yields-only approach exceeds this threshold by only a small margin.
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 The R2's of all specifications that include r;CP/ lie well above the EH
 benchmark.9

 To assess the relative merit of the different regression specifications, Table 2
 contains relative probabilities based on the Bayesian information criterion
 (BIC).10 A relative probability of one indicates the best model selected by
 the criterion, and a relative probability of zero means that a model has zero
 chance of explaining the data equally well as the best model does. The BIC
 clearly favors models that condition on rfc/>/, and in particular parsimonious
 specifications in Equations (24) and (25) that do not rely on multiple yields.
 We therefore explore such specifications in more detail in the next sections.

 3.2 Trends

 An important question is whether our results would arise if we used moving
 averages (MA) of past interest rates rather than r(cp/ to detrend yields. In Panel
 A of Table 3, we replace r(c/>/ in Equation (24) with a smoothed past interest

 rate, denoted xyld. We construct xfd in several variants: using either 1- or
 5-year yield, and different smoothing methods: the DMA as in Equation (19),
 or a simple MA with window sizes of 12, 24, or 60 months. We consistently
 find that xyld adds no predictive content to the regressions, and we cannot reject
 that the coefficient on xfd is zero. This result extends to the case in which we

 include xyld jointly with r,cp/. For instance, using the DMA of the 1-year yield

 as xyId, we have the following:

 rxt+i=d0+ di y,(l)+ d2 y,+ d2 xfd + d4 xtCf'+sl+i. (26)
 -0.58 1.39 0.11 -1.09
 (-3.51) (4.37) (0.75) (-4.81)

 Panel B of Table 3 presents analogous regressions for the alternative ways of
 constructing x,yld. The loading on x,yld remains statistically insignificant across
 all specifications, whereas the loadings and the significance of the other three
 variables are nearly unchanged compared with Regression (24).
 The Online Appendix contains additional robustness checks that indicate that

 these results do not depend on the use of the DMA for inflation (which can be
 replaced with a simple MA), or the particular choices of the smoothing windows
 for the interest rate. Likewise, they hold true if we use the T-bill rate rather than

 1-year yield, and for individual bond returns rather than rxl+\. Additionally, the
 Online Appendix investigates whether our results could spuriously arise under
 entirely random trends that have nothing to do with inflation or the yield curve.

 9 The Online Appendix shows that this conclusion is robust to varying the gain parameter v and the moving window

 N over which we compute the DMA for rfpl in Equation (19).
 10

 The relative probability for model i relative to the best model selected by BIC is RelPri =exp{(ß/Ct,est —

 BICi)T/2), where BIC = \n((r^)+\n(T)m / T, m is the number of regressors, o^ = SSE/T of the regression, and
 T is the sample size.
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 Table 3

 Predictive regressions with trends based on smoothed past interest rates

 zj ->■ Smoothed 1-year yield, Smoothed 5-year yield,
 DMA  MA12  ma24  MAfco  DMA  MA] 2  ma24  MAso
 (1)  (2)  (3)  (4)  (5)  (6)  (7)  (8)

 A. Smoothed past interest rates: rxl+ \  =d0+di;y,(1)  +d2yt+dir;,d +et+x

 y(l)  —0.48  -0.42  -0.43  -0.51  -0.47  -0.42  -0.47  -0.51

 (-2.94)  (-2.19)  (-2.26)  (-3.20)  (-2.84)  (-2.51)  (-2.98)  (-3.25)
 yt  0.72  0.54  0.53  0.75  0.66  0.56  0.76  0.78

 (2.52)  (2.38)  (2.28)  (2.56)  (2.38)  (2.10)  (2.81)  (2.59)
 yld

 H  -0.16  -0.00  0.01  -0.16  -0.11  -0.02  -0.18  -0.18

 (-0.94)  (0.03)  (0.09)  (-0.88)  (-0.70)  (-0.11)  (-0.99)  (-0.93)
 R2  0.20  0.18  0.18  0.21  0.19  0.18  0.20  0.21

 B. Smoothed past interest rate plus trend inflation: rxt+ j t=do+d\ v}'1 +^2>:r  +d^p'+£,+[
 y(D  -0.58  -0.74  -0.73  -0.56  -0.58  -0.64  -0.58  -0.56

 (-3.51)  (-3.55) 1 (-3.68)  (-3.33)  (-3.46)  (-3.84)  (-3.66)  (-3.34)
 yt  1.39  1.42  1.35  1,37  1.39  1.17  1.29  1.37

 (4.37)  (5.04)  (4.90)  (4.24)  (4.36)  (4.02)  (4.44)  (4.25)
 yld

 0  0.11  0.21  0.29  0.13  0.09  0.44  0.30  0.14

 (0.75)  (1.26)  (1.59)  (0.64)  (0.63)  (1.74)  (1.45)  (0.67)
 rCPl
 vt  -1.09  -1.08  -1.13  -1.11  -1.07  -1.21  -1.24  -1.13

 (-4.81)  (-4.62) 1 (-4.75)  (-4.51)  (-4.94)  (-4.82)  (-4.40)  (-4.42)
 R2  0.54  0.55  0.57  0.54  0.54  0.59  0.57  0.54

 Table 3 presents predictive regressions of rxr+i on yt ,yt, tJ (smoothed past interest rate), and tf PI. In the
 columns we consider different ways of smoothing the past interest rates: either 1-year yield (Columns (l)-(4))
 or 5-year yield (Columns (5)-(8)). Columns labeled DMA apply the discounted moving average in Equation
 (19) with the same parameters as for inflation. Columns MAj2, MA24, and MA50 use smoothed past interest
 rates with a simple moving average over the window of 12, 24, and 60 months, respectively. Reverse regression
 t-statistics are in parentheses.

 To evaluate this possibility, we set up the null hypothesis that bond returns are
 predictable with a linear combination of yields, and reproduce our regressions
 replacing r,cp/ with simulated driftless random walks. We find that there is
 less than 0.1% chance to obtain our empirical estimates with random trends.
 Overall, we conclude that it is very unlikely that our results are driven by biases
 because of inclusion of a spurious trend.

 3.3 Single return-forecasting factor
 Cochrane and Piazzesi (2005) show that a single forecasting factor, a fitted value
 from projecting rx,+\ on a set of time-/ forward rates, captures the variation
 in expected bond excess returns across different maturities. We propose an
 alternative way of constructing the single factor. To this end, we use the fitted

 value from Regression (25), which we label as the cycle factor, cft:

 cf, = Yo+Y\ c\V) + y2ct. (27)
 Alternatively, one could use the fitted value from Regression (24) which is
 99.5% correlated with the cft variable above, but we choose specification in
 Equation (25), to highlight the properties of the cycles. The motivation for
 including the average cycle c, in the construction of cf, is pragmatic: Similar
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 Return forecasting factor, cft, and the average cycle, ct

 970 1975 1980 1985 1990 1995 2000 2005 2010

 Figure 2 ^
 The cycle factor cf and the average cycle, c/

 4. Interpreting the Results

 Figure 2 shows the time series of the cycle factor cft and the average cycle across maturities ct.

 to the first principal component in yields, c, is a simple way to summarize the
 cross-sectional information, it attenuates measurement error in yields, and is
 less arbitrary than using a cycle with a particular maturity. We plot the cycle
 factor in Figure 2 together with the average cycle c,. With a half-life below
 10 months (monthly AR(1) coefficient 0.925), cf, is less persistent than any
 individual cycle is.

 We run regressions of individual excess returns, rx^"\, on the cycle factor.
 Panel A of Table 4 shows that cft is a significant return predictor across
 different maturities. Because one may worry about generated regressors, we
 bootstrap the reverse regression statistics and provide 5th and 95th percentiles
 of their distribution using the Li and Maddala (1997) bootstrap. Using the
 cycle factor, there is essentially no loss in terms of the predictive content
 compared with the highly parameterized yields-plus-r/ ''' Regression (23)
 (row "AR2" reports the difference in R2). Panel B of Table 4 presents bivariate

 regressions of on c, ' ' and c,"], indicating that cf, summarizes well the risk
 premium information in the yield curve relative to the maturity-specific cycles.
 In the Online Appendix, we discuss other approaches to constructing the single
 forecasting factor that lead to essentially identical risk premium dynamics, and
 by extension, to the same return predictability.

 We reveal a simple structure of three orthogonal factors to describe the cross

 section of yields: trend inflation r,c/>/, the one-period cycle c\x\ and the cycle
 factor cf,. We show that trend inflation and one-period cycle subsume the EH
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 Table 4

 Predicting returns with the cycle factor

 rx(s>  rx<7>  rjcCO)  ™<15>  „<20)

 A. Cycle factor

 r*j" 1 =Po+Pl c/z+^+'i • where c/, =
 , . (1) . -
 K)+m» +)/2cr

 c/, 0.62  0.68  0.70  0.73  0.74  0.72

 (3.80)
 t-stat (SS,[5%,95%]) 11.31,4.27]

 (4.64)
 [2.05,4.91]

 (4.92)
 [2.38,5.16]

 (5.16)
 [2.56,5.38]

 (5.26)
 [2.72,5.47

 (5.06)
 ] [2.66,5.30]

 R2 0.38  0.46  0.49  0.53  0.54  0.51

 A R2 0.02  0.01  0.01  0.01  0.01  0.04

 B. Maturity-specific cycles
 d, (n) (1) (n)

 rxt+\ =a0+a\ct +a2ct +et+l

 c<l> -1.60  -0.93  -0.72  -0.54  -0.39  -0.31

 (-2.82)  (-3.67) ( -3.77)  (-3.71)  (-3.07)  (-2.55)

 c("' 1.95  1.63  1.52  1.43  1.27  1.11

 (3.26)  (4.73)  (5.16)  (5.29)  (5.10)  (4.88)
 it2 0.33  0.46  0.51  0.53  0.52  0.50

 B2-r-t!"l=a0+alc(<">+«r+l

 r  0.36  0.49  0.63  0.76  0.76

 (2.24)  (2.94)  (3.34)  (3.57)  (3.77)  (3.88)
 R2 0.04  0.11  0.16  0.23  0.30  0.34

 Panel A shows the predictability of individual bond excess returns achieved with the cycle factor. The cycle
 factor cf t is defined in Equation (27). The row denoted "t-stat (SS,[5%,95%])" summarizes the small sample
 distributions of the reverse regression t-statistics obtained with nonparametric block bootstrap. Row A Ä2 reports

 the difference in R2 between yields-plus-r/-"p 1 Regression (23) and the single-factor regression. Panel B presents
 regressions of individual excess returns on cycles of a given maturity. T-statistics in parentheses are obtained
 with the reverse regression delta method.

 term in yields. We also map our decomposition back into the illustrative term
 structure model.

 4.1 Expectations hypothesis terms
 Regression (24) uses three variables to forecast bond returns, all of which
 are highly significant. To understand the role of these variables in predicting
 returns, let us consider restricting the loading on y, to zero:

 rx,+i=d0+ d\ _y(!)+0xy,+ dr r^p'+et+i (28)
 0.002 -0.04
 (0.51) (-0.54)

 p-value Wald test = 0.84; /?2 = 0.01.

 Excluding y, changes the regression estimates diametrically. The coefficients

 on >71 ' and r(cp' are effectively zero; the predictive R2 drops down to 0.01 ; and
 the p-value from the Wald joint significance test exceeds 0.8. Therefore, because
 our trend-inflation proxy and the 1 -year yield alone contain no predictive power
 for bond excess returns, they must control the EH component embedded in
 y, that is orthogonal to the variation in the risk premium. It is important
 to recognize that our initial specification in Equation (24) does not impose
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 such orthogonality upfront because, in general, the risk premium and the
 EH components could load on the same set of factors. In a related way, the

 one-period cycle ct '' alone does not predict returns:

 rxt+x=y0+ y\ c((1)+e,+i, R2 = 0.00. (29)
 0.002
 (0.53)

 Thus, in Regression (25), c\ ' ' controls for the EH term that is orthogonal both
 to trend inflation and to the risk premium.

 4.1.1 Predicting short-rate changes. If r,cp/ and y,( 1 ' capture the EH term in
 the yield curve, they should predict future short rates. Table 5 reports forecasts

 of changes in the 1-year yield, Ayy1^, at horizons h from 1 through 4 years
 ahead, as studied in the literature following Fama and Bliss (1987). To set a
 benchmark for our results, Panel A of Table 5 reports the standard Fama and

 Bliss (1987) regressions of yields changes Ay't \'+h on the forward-spot spread

 ft(n) — yr(1), showing that the predictive power of the spread is overall weak.
 Fama (2006) revisits this evidence by arguing that the short rate mean-reverts
 toward a time-varying rather than a constant mean. He proposes to predict
 short-rate changes with a deviation of the 1-year yield from a 60-month MA
 of the 1-year yield, as well as with a dummy variable that takes a value of one
 up to August 1981 and zero afterwards. Such regressions are reported in Panel
 B of Table 5, with and without the dummy. Without the dummy, including
 the MA of the 1-year yield, xjl (yO.MAeo), does not change the conclusion
 relative to the Fama-Bliss specification: The coefficients on r/w(y(1\MAôo)
 are insignificant at all forecast horizons, and the amount of variance explained
 is nearly the same as in Panel A. This parallels our previous finding that a
 MA of past yields does not contain predictive power for future bonds returns
 (Section 3.2). In line with Fama (2006), the dummy variable, denoted as Dgj,
 is key for the empirical success of his regressions (Panel B).

 Although the D8i dummy is chosen based on hindsight knowledge of the
 turning point in yields in the early 1980s, the xfFl proxy identifies this point
 in real time, linking the long-run mean of yields to trend inflation. Panel C

 of Table 5 predicts short-rate changes with yf1 and r;c p 1. The coefficients are
 jointly highly significant at all horizons (with p-values not exceeding 0.02). A

 negative coefficient on y[11 and a positive coefficient on rrcp/ indicate that a
 low short rate relative to trend inflation signals that the short rate will rise in

 the future. We also present univariate regressions of yield changes A_y("/+/i on

 the 1-period cycle, c, ' ' : The cycle predicts short-rate changes with a negative
 coefficient ranging from —0.40 at the 1-year horizon to —1.37 at the 4-year
 horizon, and an R2 from 0.15 to 0.47. This supports the interpretation of the
 one-period cycle as the mean-reverting component of the short rate. Indeed,
 if the short rate followed a univariate AR(1) process, the slope coefficient

 2876

This content downloaded from 90.210.166.158 on Sat, 12 Oct 2019 17:34:27 UTC
All use subject to https://about.jstor.org/terms



 Expected Returns in Treasury Bonds

 Table 5

 Predicting short-rate changes

 A. Fama-Bliss (1987) regressions
 a (0 ,Ah) OK
 A^,/+/i=ao+«i(// -yt )+st,t+h

 h years  1  2  3  4

 const, x 100  -0.18  llglllilli  _ 0.75  -1.61  -2.06

 (-0.31)  (  0.63)  ( -1.02)  (  -1.13)
 Ah) (1)
 ft -yt  0.11  0.56  1.09  1.20

 (0.18)  (0.67)  (1.44)  (1.85)
 0.00  0.05  0.19  0.25

 B. Fama (2006) regressions

 Ay?,t+h =a0+aiy'il) +a2^''1 (.yW •ma60)+"3d»\ +et,t+h

 Without 1981 dummy  With 1981 dummy

 h years  1  2  3  4  1  2  3  4

 const, x 100  0.44  0.64  0.74  0.90  -0.38  -0.83  -1.32  -1.60

 (0.67)  (0.54)  (0.45)  (0 44)  (-0.71)  (-0.80)  (-0.89)  (-0.85)

 D%\ x100  I®! :  __  -  2.41 4.09  5.57  6.62
 -  —  -  -  (3.06)  (2.71)  (2.25)  (1.87)

 -v,(,)  -0.15  -0.42  0.63  0.77  -0.41  -0.83  -1.16  -1.38

 (-0.77) ( -1.32) (-1.75)  (-2.16)  (-1.83)  (-2 32)  (-2.72)  (-3.01)

 ^(yW.MAeo)  0.05  0.25  0.42  0.51  0.33  0.70  1.01  1.20

 (0.26)  (0.69)  (0.82)  (0.76)  (1.65)  (2.05)  (2.31)  (2.40)
 R2  0.04  0.13  0.19  0.24  0.27  0.43  0.61  0.73

 pval Wald  0.69  0.41  0.21  0.09  0.01  0.00  0.00  0.01

 C. Trend inflation and 1-period cycle

 *y?J+hB«o+«i y<(1)
 C PI

 +a2xt +et,t+h  &y(tj+h =a0+«1c!1) +£t,t+h

 h years  i  2  3  4  1  2  3  4

 const, x 100  -0.25  -0.39  -0.31  0.04  -0.12  -0.24  -0.36  -0.45

 (-0.39) ( -0.33)  (-0.19)  (0.02)  (-0.41)  (-0.42)  (-0.42)  (-0.41)

 v<»  -0.40  -0.90  -1.25  -1.39  -  _  _  -

 (-2.08) (  00  -J  (-3.49)  (-3 91)  -  -  -  -

 TCPI
 T!  0.57  1.25  1.68  1.78  -

 . - .
 -  -

 (2.80) (3.41) (3.30) (2.66) -  -  -  -

 4"  -  __  -  -  -0.40  -0.90  -1.24  -1.37
 -  -  -  -  (-2.09)  (-2.87)  (-3.47)  (-3.84)

 R2  0.15  0.34  0.46  0.48  0.15  0.34  0.46  0.47

 pval Wald  0.02  0.00  0.00  0.00  -  -  -  -

 Table 5 presents the predictability of future changes in the 1 -year yield, Ay = -*r+i —^I>' for horizons h
 from 1 to 4 years ahead. In Panel B (without dummy) and C, rows "pval Wald" report p-values for a Wald test
 that regression coefficients (excluding constant) are jointly equal to zero; the p-value in panel B (with dummy) is
 for a Wald test that all regression coefficients (including constant) are zero. The dummy variable Dgj in panel B
 takes value of one up till August 1981 and zero afterwards following Fama (2006). T-statistics (in parentheses)
 and Wald tests are obtained with reverse regressions.

 in the regression of Ay^+h on yf '1 would approach —1 and the R2 would
 approach 0.5 as the horizon h increases (see e.g., the Appendix in Fama and
 Bliss 1987). Our evidence is consistent with the mean reversion of the short rate

 toward slowly moving trend inflation rather than constant mean. The univariate

 regression with cj" has essentially the same predictive content as the bivariate

 specification with rfc p 1 and yj'\ implying that there is a significant variation
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 in short-rate expectations at the business cycle frequency that is uncorrected
 with the trend inflation.

 Overall, these results support the interpretation that rf1 and ct 1 ' capture the
 EH component of the yield curve. In the Online Appendix, we forecast short

 rate changes with r(c/>/ and ct 1 ' out of sample, showing that these two variables
 outperform alternative predictors of short-rate changes, such as random walk
 or a model using the principal components of yields as predictors.

 4.1.2 Predicting inflation. The DMA of past core CPI inflation, r(CP/, is not
 selected to predict best either short-rate changes or future excess returns, but
 rather it is constructed as a measure of expected inflation. Therefore, the second

 important element of our interpretation is that r(CF/ is indeed a good proxy for
 inflation expectations. To show that this is so, we use today's value of xfF1

 to forecasts quarterly inflation xt1+h/4-41nerf ' ^ = {1,4,8,12,16}. For
 consistency with the literature (e.g., Ang, Bekaert, and Wei 2007; Faust and
 Wright 2013), we form out-of-sample forecasts using nonoverlapping quarterly
 observations. The data are sampled in the middle month of each quarter.11 We

 compare the forecasts obtained with xfFl with the following models:

 Random walk. We consider two random walk models to forecast xx^+h,4—a

 simple random walk (SRW) that uses n, as predictor, and an annual
 random walk (AORW) that uses \ AORW follows Atkeson
 and Ohanian (2001).

 Survey-based forecasts. Short-term forecasts (LivST6M, LivST12M) for
 6 and 12 months ahead are from the Livingston survey; long-term
 forecasts (LivLT) are compiled from Livingston and Blue Chip Economic
 Indicators (BCEI) surveys by the Philadelphia Fed and are available
 from 1979:Q4. Surveys are conducted semiannually. Thus, if a survey
 is available in March, our first quarterly forecast is for inflation between
 March and June.

 ARMA(1,1). An ARMA(1,1) model is estimated recursively with data up to
 time t.

 We form out-of-sample forecasts starting in 1979:Q4, 1984:Q4, and
 1995:Q1, and the last forecast is made for 2011:Q4. Following Ang, Bekaert,
 and Wei (2007), we use forecasts from the ARMA( 1,1) model as a benchmark.

 Table 6 reports the ratios of RMSEs obtained from different models to the
 RMSEs from ARMA(1,1). A ratio less than one means that a given model

 11 In a study of inflation forecasting methods, Faust and Wright (2013) construct the DMA of quarter-over-quarter
 inflation, sampled quarterly with the gain parameter 0.95. Our inflation forecasts are virtually the same if we

 sample quarterly our zfpl proxy (i.e., constructed with year-over-year infi
 parameter 0.987) or if we follow their approach (see the Online Appendix).
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 outperforms ARMA(1,1). We provide forecasts for both the core and all-items
 inflation, but xfPI is always based on core inflation as in our empirical analysis
 in Section 3. The ARMA( 1,1) model is estimated starting in 1967:Q1, which
 is when the first observation of r(CP/ becomes available.

 The main results can be summarized as follows. The xfPI variable performs
 well at longer horizons (four quarters and above). For longer horizons and
 all-items inflation, xfpl delivers the lowest RMSE ratios out of all competing
 models; for core inflation, the performance of xfpl is comparable to AORW.
 The long-term survey produces somewhat more accurate forecasts of core
 inflation, but it underperforms x't :p' in forecasting all-items inflation. These
 results are consistent with Cogley (2002), who shows that constant-gain
 learning produces more accurate inflation forecasts over the medium run
 (1 through 3 years) compared with alternative models. Likewise, Faust and
 Wright (2013) stress the importance of accounting for the slow-moving
 component of inflation in forecasting. We notice that although with either
 x':pl or long-term surveys we use one forecast without differentiating across
 horizons, they generally outperform short-term surveys. This fact supports our
 use of one trend-inflation proxy as a measure of inflation expectations across
 all yield maturities.

 4.2 Interpretation of interest-rate cycles
 Our results up to this point suggest that cycles with different maturities do
 not move on a single factor (see e.g., their unconditional correlation matrix in
 Table 1). It is therefore useful to understand the factor structure that underlies

 the cross-section of cycles. Panel B2 of Table 4 displays the slope coefficients

 and the R2 from univariate regressions of rx'" j on c'"1 for different n. The
 predictive content of the cycles for future returns increases with the maturity,
 but the predictability is significantly weaker than it is in bivariate regressions

 that include both c,1 ' and c,"1 (Panel Bl). This is because cycles contain not
 only the term premium but also the EH component, which we have shown to be
 uncorrelated with the premium. The relative importance of the latter decreases
 with the maturity, as visible in the increasing R2 in univariate regressions.
 However, even at long maturities, cycles are not direct measures of the risk

 premium—a fact that shows in the significance of ctl> at long maturities.

 In terms of economic interpretation, one would expect the one-period cycle

 ct(1) to be linked to the ex-ante real rate (i.e., rfx = y(,^ — E,(7Tt+ j)). Figure 3

 superimposes c((1) with two measures of the ex-ante real rate constructed using

 1-year-ahead expected inflation from the Livingston survey and the Survey
 of Professional Forecasters (SPF). The correlation between the survey-based

 ex-ante real rate and c, ' ' is 0.59 and 0.63 for the two surveys, respectively.
 Although both share very similar business cycle variation, the survey-based
 ex-ante real rate displays a more persistent behavior. Intuitively, if the loading
 of the short rate on expected inflation is higher than one, as suggested by our
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 Table 6  Predicting inflation
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 Table 6 presents ratios of out-of-sample root-mean-squared errors (RMSEs) for forecasts of quarterly inflation. The forecasts are formed for a single quarter inflation at a given horizon,  nt+h/4' tab'e reports the RMSEs from different models relative to the RMSE from ARMA( 1,1). The models considered are: (1) simple random walk (SRW), (2) annual random walk  (AORW), (3) only rcPl, and three surveys with different forecast horizons (4) LivLT (long-term inflation forecasts 10 years ahead, compiled by Philadelphia Fed from BCEI and Livingston  surveys), (5) LivST 12M (12-month-ahead Livingston forecasts), (6) LivST 6M (6-month-ahead Livingston forecast). Survey forecasts are available semiannually, and therefore we use the  data at the survey frequency. The ARMA( 1,1) model is estimated at a quarterly frequency starting in Q1 1967. Out-of-sample forecasts are formed starting in Q4 1979, Q4 1984, and Q1  1995 and the last forecast is made for Q4 2011. The quarter in which we start each out-of-sample period is dictated by the timing of survey data.
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 1-year cycle and the ex-ante real rate

 1970 1975 1980 1985 1990 1995 2000 2005 2010

 Figure 3
 Short-maturity cycle and the ex-ante real rate

 The figure compares the ex-ante real rate with 1-year interest rate cycle, c^1'. The ex-ante real rate is obtained

 rfx,s =y^ — E*(nt+\), where Est{nt+\) is expected inflation 1-year ahead from Livingston s = Liv or SPF

 s = SPF survey, respectively. For ease of comparison, we add 2% to The Livingston survey is available
 semiannually, and the SPF survey is quarterly.

 estimates (see Panel A in Table 1 ), then by definition the ex-ante real rate r" will

 reflect part of the trend-inflation dynamics.12 As such, cj" can be interpreted as
 the component of the ex-ante real rate that is orthogonal to expected inflation.

 4.3 Yield curve factors and factor loadings of yields
 4.3.1 Regression loadings. The preceding discussion leads to a simple
 description of the yield curve in terms of three observable variables Ft =

 (ttCPI,c^\cftY, which we have connected to expected inflation, the real rate,
 and the risk premium, respectively. We project yields on the factors F, to
 illustrate their cross-sectional effect on the yield curve:

 y'"' = Ä„ + Bl r,c/>/ + BrnCti) + Bxn cft+e(?\ (30)

 On average, the regression explains 99.7% of the variation in yields across
 maturities, with the lowest fraction for the 20-year yield (98.8%) and the
 highest for the 1-year yield (100%, by construction). Figure 4 displays the
 regression loadings of yields on factors as a function of maturity (solid lines).
 The loadings are scaled to represent the effect of a one-standard-deviation
 shock to a factor. As expected, r,cp/ has a level effect on the yield curve.

 The loadings of c'1' decline with maturity, but are still sizeable even at n = 20
 years; those of cf, increase with maturity. This cross-sectional pattern agrees

 12 A regression of on the SPF (Livingston) forecast of inflation Est{nt+\) gives a slope coefficient of 1.31
 (1.10), t-statistic of 5.98 (6.39), and an Rl of 67% (65%).
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 Loadings of yields on factors

 O Trend-inflation factor, rt (t(cp/) t

 .<»h V Real factor, rt (cj )
 ^ Price of risk factor, Xt (eft)

 » 0 0 » $
 v v v v ^

 10 12 14 16 18 20

 maturity (years)

 Figure 4
 Loadings of yields on factors: regressions vs. affine model

 The solid lines present the loadings of yields on observable factors Ft = {xfPI,c^\cft^ obtained from
 Regression (30). The markers present the loadings obtained from the affine model given in Equation (17)
 for factors Ft =(zt,rt,xt)'. The parameters of the affine model are calibrated by minimizing the sum of squared
 distances between the loadings from the regression and from the affine model, see Equations (31 )—(32).

 with an increasing contribution of the term premium for longer-term cycles, as
 evidenced in Panel B of Table 4 above. In terms of magnitudes, we find that a

 one-standard-deviation shock to each of the factors, xfpl, c, ' ' and cf,, moves
 the yield curve by about 240, 80, and 50 basis points, respectively, on average

 across maturities. The effect of c,(l) (cf,) is 175 (0, by construction) basis points
 at the 1-year maturity and 50 (60) basis points at the 20-year maturity.

 A common way to summarize the cross-sectional information in the yield
 curve is in terms of principal components (PCs): level, slope, and curvature.
 We find that the level is most strongly related to xfpl, which captures 86.5% of

 its variance, whereas cft and c,1 ' make up less than 4% and 10%, respectively.

 The slope loads mainly on c,1 ' and cft, which account for 61% and 32% of
 its variance, respectively; and r, accounts for less than 3%. Given that the
 1-period cycle itself does not forecast returns, its large contribution to the slope
 explains why slope is a noisy measure of the bond risk premium.

 4.3.2 Affine model loadings. It is useful to connect these results to the
 affine model in Section 1 to shed light on the parameters of trend inflation,
 the real factor, and the price-of-risk factor that are consistent with the cross
 sectional loadings in Regression (30). The model-based counterparts of F, =

 (rare F, = (r,,r(,x,)'. Notice that our observables F, satisfy the
 assumption in the model that factors are orthogonal. While this is obviously

 true for ctl> and r;c''1, the correlation between cft and ct'' is less than 0.01, in

 line with the fact that c\]} does not predict bond returns. Using the estimates
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 of Regression (30) at different maturities, we can calibrate the degree of
 persistence of trend inflation and of the real factor, as well as the market price
 of risk parameters that would generate such loadings in the affine model. To
 this end, we minimize the sum of squared distances:

 20 20

 r\2
 : = min VW - B- )2 ; <j>r = min Y](B-- B- )
 rl TT <Pr TT
 1=1 1=1

 20

 (Kx,Kx)= min YVßf-5f)2
 A-rxiA-rx . ,

 1 = 1

 where Bx,Brn, B* are defined in Equation (17). We set the values of ST = 1.43
 and Sr -1, as discussed in Section 2.5. To calibrate the market price-of-risk
 parameters in Equation (32), we fix the mean reversion of the price-of-risk
 factor at <px =0.392, which is estimated from the time series of cft (i.e., the
 monthly AR(1) coefficient of 0.925 raised to the 12th power).13

 The annual AR(1) coefficients calibrated in Equation (31) are <j>T =0.975 and
 0r=O.75. This implies a highly persistent trend-inflation dynamics, with the
 real factor being the relatively more transitory component of the short rate. For

 the price of risk parameters, we find krx = —0.47 and À„=0.16. Economically,
 these parameters mean that a positive shock to trend inflation (real-rate factor)
 increases (decreases) the conditional bond risk premium (see Equation (15)). A
 larger magnitude of Xrx than krx is consistent with the view that shocks to trend

 inflation (level shocks in the yield curve) are the main source of time-varying
 risk compensation in the yield curve (e.g., Cochrane and Piazzesi 2008).14

 The calibrated affine loadings (Bx,Brn,B*) are represented by markers in
 Figure 4 and are plotted against the coefficients from Regression (30). Despite
 the simplicity of the affine model, these two sets of coefficients line up very
 closely.

 To show that the affine model can match important properties of the yield
 curve, we obtain the remaining parameters as follows: Factor means and
 standard deviations are calibrated to match means and standard deviations

 13 We could calibrate <px jointly with krx, krx from Equation (32). However, analysis of the B* loadings in Recursion
 (17) shows that À's always appear premultiplied by a function of (px. Thus, in practice, these parameters turn

 out to be difficult to identify jointly. The advantage of fixing 4>x at the AR(1) coefficient estimated from the time
 series of the cycle factor cft is that it leaves our calibration fewer degrees of freedom, and allows us to verify
 whether the persistence of the risk premiums we estimate from the data is in fact consistent with economically
 plausible market price of risk parameters.

 14 Although there is little disagreement in the literature that the nominal bond premiums are positive, the pricing
 of real-rate shocks is harder to judge. TIPS are available over a relatively short sample and have been exposed
 to a significant liquidity premium. However, Barr and Campbell (1997) document that average excess returns
 on real bonds in the United Kingdom are negative. Moreover, a negative real term premium arises if real rates
 are procyclical, a fact that finds support in the estimates of Ang, Bekaert, and Wei (2008), and in equilibrium
 models with recursive preferences such as Piazzesi and Schneider (2006). In a related way, using a long-run risk
 model, Bansal and Shaliastovich (2013) show that bond risk premium increases with inflation uncertainty and
 decreases with real uncertainty.
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 Table 7

 Calibration of the affine model

 A. Calibrated parameters

 80
 0

 St
 1.43

 Sr
 1

 0 r
 0.98

 <Pr

 0.75
 4>x

 0.39

 in %
 E( Tf)
 3.50

 E(r,)
 1.00

 E(xt)
 0

 Std(tf)
 1.90

 Std(r,)
 1.74

 Std(x[)
 0.81

 parx 100
 Mr

 0.09
 Mr

 0.25
 Mx

 0
 "z

 0.42
 Mr

 1.14  0.74

 A-Or

 -0.002
 '•Or

 0.001
 ^TX

 -0.47
 Arc
 0.16

 B. Model-implied unconditional moments of yields and excess returns (c, % p.a.)

 Yields, yjn)  Excess returns, rx^

 n= 1  n = 5  « = 10  n = 2  n=5  n = 10

 Mean

 St.dev.
 5.99
 3.23

 6.36
 2.84

 6.81

 2.59

 0.18
 1.36

 0.74

 4.56
 1.62

 9.09

 Panel A reports the calibrated parameters of the affine model from Section 1. <$o, <$r > and 8r are from Regression

 (20) for <pr, <f)r are calibrated in Equation (31). <px is estimated as the AR(1) coefficient from the monthly

 time series of cft (monthly AR(1) of 0.925), and raised to the 12th power to obtain the annual mean reversion.

 liT,ßr,Hx and ax,or,Ox are calibrated to match means and standard deviations of factors zfPI,ct\cft,
 respectively. fj,x is fixed at zero for xt to capture just the conditional variation in risk premium, whereas A.qt ,
 are calibrated to generate realistic unconditional average excess returns (these parameters are inconsequential
 for our analysis). XTX and Xrx are obtained from Equation (32). Panel B reports the unconditional means and
 standard deviations of yields and excess returns at the calibrated model parameters.

 of (t{ pi,c,l>,cf; jix is fixed at zero, whereas ÀoT and >,0r are calibrated
 to sample means of yields and excess returns (although these parameters are
 inconsequential for our analysis). All parameters are reported in Table 7 (Panel
 A). The model generates realistic unconditional moments of yields and excess
 returns (Panel B).

 In sum, three observable factors xfPI,c\l\cft provide a simple novel
 decomposition of the cross-section of interest rates. This decomposition is
 supported with the intuition from the affine model about how trend inflation,
 the real factor, and the market prices of risk affect the Treasury yield curve.

 4.4 Measurement error

 In an affine model, yields are linear functions of a low number of factors. Thus,

 in principle, one should be able to recover factors from yields. Using our three

 factor affine model from Section 1 as an example, let yr = (y(tn 1,, y1,"2', yj"2')'

 be a vector of model-implied yields with different maturities, then y, = A +

 BFt, where vector Â(3Xand matrix ßpX3) contain the affine loadings. If
 matrix B is of full rank, we can invert the equation to perfectly recover factors

 from yields: Ft = B~l(y, — A). Thus, from the perspective of an affine setting,
 a natural question that arises is why the additional information we provide
 about trend inflation helps recover the risk premium in the yield curve more
 effectively than information contained in yields themselves does.
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 Observed yields are contaminated by a small measurement error because
 of bid-ask spreads, and perhaps more importantly, because of the splining
 of zero-coupon yields. The measurement error resulting from splining is
 about seven to nine basis points, as shown by Bekaert, Hodrick, and
 Marshall (1997). Using Fama-Bliss (FB), Gürkanyak-Sack-Wright (GSW), and
 CMT-based zero-coupon yields, we compute the RMSEs between yields of
 corresponding maturities in each dataset for our sample period as RMSE, j =

 fzL;=iO't"^1 where i,j = {FB,GSW,CMT}. The average,
 minimum and maximum RMSE is 11, 6, and 20 basis points across datasets
 and maturities from 1 through 10 years.

 We illustrate the effects of measurement error on the ability to recover the
 risk premium variation from yields within the framework of our affine model.
 Suppose that yields are observed with an additive noise r],, which is uncorrected

 with true model-based yields, yt"\ at all leads and lags and is also uncorrelated
 across maturities:

 y<in)',] = y(tn) + T]t, 77/ —/V( 0,a^). (33)

 From Equation (15), the realized excess returns in the model are driven by
 the risk premium factor x, and orthogonal shocks. Thus, estimating the risk
 premium via predictive regressions of realized excess returns amounts to
 uncovering the variation in x,. If yields are observed without measurement
 error, a regression of xt on true yields y, gives an R2 equal to one. However,
 this is no longer true if yields are noisy. To demonstrate this, suppose we want to

 explain the variation in the price-of-risk factor using the following regression15 :

 xt=ao+a'zZ?+ef, (34)

 and consider different specifications for Znt. In the yields-only specifications,
 Zl involves: three yields, six yields, or three PCs of yields. For the yields
 plus- T, specification, Z1} contains two yields and r,. Trend inflation can itself

 be measured with iid noise, r(f-x, +et, e, ~iV(0,ov). Measurement error in
 the regressor leads to the attenuation bias in the least-squares estimates of
 az, and thus lowers the regression R2 away from unity. We first evaluate
 how the bias depends on size of measurement error, csr]. We simulate 470
 monthly observations from the affine model using the parameters calibrated
 in the previous section. We then run Regressions (34) on simulated data. The
 simulation is repeated 10,000 times, and we report average R2 obtained across
 simulations.

 To make the results more transparent, we focus on regressions of xt as the dependent variable rather than
 rxt+1 » which contains xt and the orthogonal unpredictable shock. This allows us to explore the consequences of
 the measurement error in explanatory variables. The measurement error in explanatory variables is a far more
 important source of bias in the least-squares estimates than the measurement error is in the response variable
 (e.g., Wooldridge 2010).
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 Panel A of Figure 5 displays the R2 from Regression (34) as a function of
 av, which takes values from 0 to 15 basis points. When otj =0, as expected, we
 recover R2-1 for all specifications of Zf, except the six-yields case, which is
 degenerate in a model with three shocks and thus omitted. However, even a
 small amount of measurement noise leads to a bias. The R2 declines rapidly
 with an for regressions where Zf contains only yields, and much more slowly
 if it includes yields and xt. The bias is the largest if Zf contains three yields.
 It is somewhat smaller with six yields and yet smaller if we use three PCs.
 By constructing the PCs we diversify away part of the measurement error,
 however the bias still remains visibly larger than for a regression that includes

 yields jointly with rr. For instance, at an-5 basis points, the R2 obtained
 with three PCs is 0.86, and the R2 obtained with yields-plus-r, is 0.998.
 As such, in the yields-only regression, the bias in the coefficients resulting
 from measurement error implies that the estimated price-of-risk dynamics are
 significantly contaminated by the EH term; the EH term itself is uncorrelated
 with the true risk premium in the model.

 It is more realistic to assume that an econometrician does not observe the

 true X( but uses a noisy proxy. At which size of the measurement error in
 xf, ay, would yields-plus-r, approach deliver a similar bias as the yields-only
 approach? In Panel B of Figure 5, we vary a( between 0 and 50 basis points,
 keeping the measurement error in yields fixed at cr,, = 9 basis points. The figure
 shows that the bias in the yields-plus-r, regression deteriorates to the level of
 the three-PCs regression only at cre =49 basis points.

 We are not the first to suggest that measurement error can obscure
 the risk premium variation in yields (Cochrane and Piazzesi 2005; Duffee
 2011). Cochrane and Piazzesi (2005) notice that one can improve on their
 predictive regressions by using additional lags of forward rates to mitigate
 the measurement error. We show that a small amount of noise in yields can
 explain why including more yields or forward rates as regressors, common in
 the literature, improves the return predictability, even if the true yield curve
 is driven by a small number of factors. Our results also illustrate that using a
 proxy for trend inflation, even if an imperfect one, is an effective strategy
 for uncovering the variation in risk premiums when measurement error is
 present. Intuitively, the measurement error affects most significantly our ability

 to recover the least persistent factor in yields (i.e., the price-of-risk factor).
 Providing additional information about trend inflation helps to disentangle the
 EH component in yields from the risk premium.

 5. Cycles and CP Factor In and Out of Sample

 Our predictability results naturally lead to a question about the link between the

 cycle factor and the single return forecasting factor of Cochrane and Piazzesi
 (2005).
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 Figure 5
 Bias resulting from measurement error
 The figure presents the bias in recovering the price-of-risk factor xt from the cross section of yields that arises

 because of the measurement error in yields and/or in trend inflation. Panel A plots the R2 from Regression (34)

 (i.e., projecting xt on Z1}). The legend displays the different specifications of Z?. rt in regressions in Panel A is

 measured without an error. Panel B shows the R2 from the same projection but when rt is measured with an iid
 normal noise (i.e., rf = z> +€t). The simulation is based on the affine model from Section 1 using the parameters
 reported in Table 7. We simulate 470 monthly observations, with 10,000 repetition from the model. For each

 specification, the figure reports the average R2's across simulations.
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 5.1 The Cochrane-Piazzesi factor

 Cochrane and Piazzesi (2005) construct a return forecasting factor as the fitted
 value from the following regression:

 rxt+l^y0 + ^_/Yift')+st+\=Yo + y'f,+£t+\, Rz=0.24. (35)
 ;=i

 On the right-hand side, we use maturities of forward rates of 1, 2, 5, 7, 10 and
 20 years. The explanatory power of the regressions is the same as in the yields
 only specification in Equation (22), and using other maturities or more forward
 rates does not change the fit. We denote the Cochrane-Piazzesi (CP) factor as
 CP, = y'fi. To investigate the link between our results and the CP regression

 let us express an n-year yield in terms of rfF1 and the orthogonal residual c\n)
 (i.e., using Equation (21)):

 -,vi) , LT _C , .(«) yt • (36)

 Given that //"' = —(n — 1 )yj" 1 ' +ny'jn\ any forward rate can be decomposed in

 an analogous way. Clearly, a projection of an n-year yield yf" onto r(c/>/ and

 c " gives an R1 equal to one, and in this sense Equation (36) can be thought of
 as a decomposition. It is informative to rewrite the CP factor y'f, in terms of

 r(c/>/ and the cycles:

 y'f, = y0+rfp' C^Yt )+E =Yo+Y'i^p,+y'c,, (37)
 ;=l 1=1

 where vectors y and y are functions of the estimated y's in Equation (35)
 and by s in Equation (36),16 1 is an m-dimensional vector of ones, and c,=

 (c?\...,c,(m)) . By construction, the correlation between y'f, in Equation (35)
 and (y'lrf' + y'c,) in Equation (37) equals one.

 From Section 4.1, one can expect that the CP factor captures mainly the
 variation in yields independent of the trend inflation. This can be tested by
 allowing the excess return to load with separate coefficients on each term in
 Equation (37):

 7x,+l=a0+ ai (y'lrtcp,)+ a2 (y'c,) +£r+i, R2 = 0.27. (38)
 -0.68 1st regressor J J, 2nd regressor (-0.07) h (3.36)

 The entire explanatory power of Regression (38) comes from the second term.
 We note that Regression (38) is not equivalent to the unconstrained yields-plus

 rrc/>/ Regression (23) because the y and y coefficients are determined by the

 The coefficients are Yk ~ Yk —(^ ~~ 1 )^_ j and Yk = ^
 for 1 < & < m

 for k=m.
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 Table 8

 Bivariate predictive regressions with the CP and the cycle factor

 A. CMT zero-coupon yields

 „(2)  „(5)  „<7)  «<i°>  rjc(15)  rx(20)

 CP,  -0.01  -0.05  -0.02  n m v.yjj  0.00  0.07

 (-0.88) (  -0.41)  (-0.23)  (-0.18)  (0.03)  (0.36)
 cf i  0.63  0.71  0.72  0.75  0.74  0.67

 (3.55)  (3.84)  (3.93)  (4.05)  (3.99)  (3.63)

 R2(CP + cf)  0.38  0.46  0.49  0.53  0.54  0.51

 R2 from univariate regressions:

 R2 (CP)  0.17  0.19  0.22  0.22  0.25  0.27

 R2 (cf)  0.38  0.46  0.49  0.53  0.54  0.51

 B. Fama-Bliss zero-coupon yields

 rx®  „(3)  r*W  «<5>

 CP,  0.07  0.09  0 13  0.08

 (-0.28)  (0.09)  (0.37)  (0.22)

 cf,  0.56  0.56  0.56  0.59

 (4.02)  (4.21)  (4.36)  (4.51)

 R2 (CP + cf)  0.36  0.39  0.41  0.41

 R2 from univariate regressions:

 R2 (CP)  0.17  0.19  0.22  0.20

 R2 (cf)  0.36  0.38  0.41  0.41

 Table 8 reports the results from bivariate predictive regressions of bond excess returns with the CP factor and the

 cf factor as regressors: rxf" j =a+ß\ CPt +ß2 cft +£f+i. The last two rows of each panel provide the predictive

 /?2 from univariate regressions using either the CP factor or the cf factor as the regressor. Panel A uses CMT
 based zero-coupon yields (forwards) with maturities of 1,2,5,7, 10, and 20 years, to construct cf t and CPt- y'ft
 factors, as in Equations (27) and (35), respectively. Analogously, Panel B uses Fama-Bliss zero-coupon yields
 with maturities from 1 through 5 years to construct the forecasting factors. Reverse regression delta method
 t-statistics are in parentheses. All variables are standardized.

 y's estimated in Equation (35). The intuition from the affine model about the
 role of measurement error in the yields-only regressions suggests that the CP
 factor is noised up by the variation in the EH component of yields. Indeed, the

 correlation of y'f, with the two EH terms in our decomposition, rf '' ' and c, 1 ',
 is 0.20 and —0.56, respectively, and its correlation with cft is 0.67.

 Table 8 reports bivariate predictive regressions in which we include both
 the cycle factor cf, and the CP factor as regressors. There is evidence that
 CP regressions can be sensitive to the measurement error that arises from
 different ways of constructing the zero-coupon yield curve (Cochrane and
 Piazzesi 2008). Therefore, we provide estimates for the CMT, as well as for the
 Fama-Bliss data sets. The conclusions are the same when the GSW yields are
 used and are not reported to save space. The main observation from the table is
 that the CP factor becomes economically and statistically insignificant and has
 no incremental explanatory power beyond cft. This conclusion holds for all
 bond maturities and in both data sets, and is consistent with these two return

 forecasting variables capturing a common source of variation in expected bond
 returns, but the CP factor being more noisy.
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 5.2 Out-of-sample predictability
 We conduct an out-of-sample experiment to assess the stability of the forecasts
 over time. Suppose that an investor forms inflation expectations using the DMA

 xfpl as a rule of thumb. In doing so, he exploits inflation information that is
 available up to time t and updates the estimates of r'1'1 with the incoming data
 and the gain parameter of v-0.987. Note that we endow the investor with the
 learning parameter v; therefore, the exercise is quasi out of sample. We drop
 this assumption in Section 6.2.

 We start the out-of-sample exercise at three dates, January 1978, January
 1985, and January 1995, all ending in December 2011, and consider three sets
 of forecasting variables: cycles, forwards, and forward-spot spreads. Because
 we forecast annual returns, for each sample, we obtain the initial parameter
 estimates based on the periods from November 1971 until January of 1977,
 1984, and 1994, respectively. Using information up to, say to, we predict bond
 returns at t0 +12 months and expand the sample month by month.17 Our out
 of-sample tests involve the following three statistics:

 The encompassing test (ENC-NEW) of Clark and McCracken (2001)—
 the null hypothesis is that the forward rate regressions encompass all
 predictability in bond excess returns, which cannot be further improved
 by conditioning on trend inflation.

 The ratio of mean squared errors (MSEs) implied by the forward rate versus
 cycle regressions—a number less than one indicates that cycles generate
 a lower prediction error.

 The out-of-sample R2 of Campbell and Thompson (2008), R2)œ, which
 compares the forecasting performance of a given predictor toward a
 "naive" forecast obtained with the historical average return—a positive
 value indicates that the predictive model has a lower mean-squared
 prediction error than the "naive" forecast.

 For forward rate regressions, we use rates with maturities of 1, 2, 5, 7, 10,
 and 20 years. For cycle regressions, we use two specifications differing in
 the number of regressors: (i) six cycles with the same maturities as forward

 rates and (ii) two cycles, c\X) and c„ as used to construct cft in Equation
 (27). Although (i) and (if) produce essentially identical in-sample results,
 comparing them out of sample helps assess the effect of overfitting on the
 stability of the forecasts. For comparison with the forward rate regressions, in
 the ENC test we employ the six-cycles specification. Finally, for forward-spot

 17 With information up to time tQ, we obtain cycles as in Equation (21), and run regressions to predict excess
 returns realized in tQ with data up to tQ —12 months. At the estimated parameters, we then predict excess returns
 12 months ahead (i.e., realized at tQ +12 months). We extend the sample month by month and repeat these steps
 until we reach the maximum sample length.
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 spread regressions, we predict excess returns on the n-year bond with the

 corresponding forward-spot spread, //"' —
 Table 9 reports the out-of-sample tests. The ENC-NEW test rejects the

 null hypothesis for all maturities at the 95% confidence level: using cycles
 significantly improves the forecasts over the linear combination of forward
 rates. For all maturities, forward-rate regressions have higher MSEs and deliver
 negative out-of-sample . This is consistent with the recent evidence of
 Thornton and Valente (2012), who argue that using multiple forward rates to
 predict bond excess returns does not generate systematic economic value to
 investors out of sample and can be outperformed with a simple forward-spot
 spread. However, our two-cycles specification outperforms the forward-spot

 spread. A comparison of the Rfms between the two- and six-cycle models voos

 suggests that overfitting is a concern in predictive regressions with several
 correlated regressors. A more parsimonious specification gives results that
 are more consistent across subsamples and maturities. With one exception,
 /?oOS obtained with two cycles are positive, whereas the six-cycles version xoos

 deteriorates in the last subperiod along with other predictors.
 The negative out-of-sample results using multiple forward rates do not mean

 that the in-sample evidence using the CP factor is spurious (see also Inoue and
 Kilian (2004)). Rather, although the CP factor captures an important element of
 the risk premium, its coefficient estimates are noisy, creating a wedge between

 in- and out-of-sample forecasts. From this perspective, one useful feature of
 our approach is that it involves few precisely estimated parameters.

 In the Online Appendix, we show that the out-of-sample conclusions with
 cycles are not significantly changed when varying the learning parameter v in
 Equation (19) between 0.975 (fast updating) and 0.995 (very slow updating),
 which is the range of values used in the literature.

 6. Robustness

 6.1 Alternative measures of inflation expectations
 In this section, we discuss alternative proxies for trend inflation based on
 survey inflation expectations, current realized inflation, and different ways
 of smoothing past realized inflation. In each case, we reconstruct the cycle
 factor by replacing r':p' with an alternative measure and reestimate our return

 predictive regressions for maturities of 2, 5 and 10 years. The conclusions for
 other maturities remain unchanged and therefore we do not report those for
 brevity. The results are summarized in Table 10.

 In Panels A and B of Table 10, we consider survey expectations of inflation
 from several sources (Blue Chip, SPF, and Livingston surveys). The surveys
 are available at different frequencies, different forecast horizons (long-horizon

 forecasts in Panel A and 1-year forecasts in Panel B), and over varying sample
 periods. Details regarding the data are provided in the Online Appendix. We
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 Table 9

 Out-of-sample tests

 Test  r*<2>  rx(5)  rx™  rjC(10)  rjc(15)  rx(20)

 A. Out-of-sample period: 1978-2011

 (1) ENC-NEW  139.69  146.19  157.23  176.97  176.40  157.61

 (2) Bootstrap 95% CV  75.99  61.93  60.60  57.37  57.62  57.55

 (3) MSE(6 cyc)/MSE(6 fwd)  0.70  0.63  0.60  0.56  0.56  0.62

 (4) MSE(2 cyc)/MSE(6 fwd)  0.66  0.57  0.55  0.50  0.50  0.63

 (5) eye)
 (6) R5o,(2 eye)

 0.10  0.19  0.26  0.30  0.31  0.31

 0.16  0.27  0.33  0.38  0.38  0.30

 (7) R^,s(6 fwd)
 (8) R,,os( fwd-spot spread)

 -0.29  -0.28  -0.23  -0.25  -0.24  -0.12

 0.10  0.09  0.07  0.08  0.09  0.09

 B. Out-of-sample period: 1985-2011

 (1) ENC-NEW  116.49  115.58  127.23  145.34  146.33  134.47

 (2) Bootstrap 95% CV  48.52  39.18  39.04  39.81  41.76  44.06

 (3) MSE16 cyc)/MSE<6 fwd)  0.69  0.64  0.62  0.60  0.62  0.67

 (4) MSE(2 cyc)/MSE(6 fwd)  0.59  0.52  0.52  0.50  0.52  0.59

 (5)^(6 eye)  -0.08  0.16  0.25  0.30  0.31  0 31

 (6) «oos(2 eye)  0.08  0.31  0.37  0.42  0.42  0.39

 0) «L(6 fwd)  -0.55  -0.31  -0.20  -0.17  -0.11  -0.04

 (8) /?oOS(fwd-spot spread)  0.07  0.07  0.05  0.08  0.09  0.10

 C. Out-of-sample period: 1995-2011

 (1) ENC-NEW  61.65  57.88  66.75  81.24  86.43  81.53

 (2) Bootstrap 95% CV  22.28  23.11  25.34  24.53  27.28  36.22

 (3) MSE16 cyc)/MSE(6 fwd)  0.67  0.64  0.59  0.52  0.50  0.54

 (4) MSE(2 cyc)/MSE(6 fwd)  0.46  0.46  0.42  0.41  0.38  0.33

 (5)^(6 eye)
 (6) ^oos(2 eye)

 -0.58  -0.26  -0.16  -0.03  0.01  -0.12

 -0.09  0.10  0.17  0.20  0.26  0.32

 (7)R2os(6fwd)  -1.37  -0.97  -0.97  -0.97  -0.97  -1.07

 (8) /?QOS(fwd-spot spread)  -0.19  -0.06  -0.09  -0.06  -0.06  -0.06

 Table 9 reports the results of out-of-sample tests. Row (1) in each panel contains the ENC-NEW test. The null
 hypothesis is that the predictive regression with forward rates encompasses ;
 returns. The null is tested against the alternative that cycles improve the predictability achieved by forward rates.
 For forward rates and cycles we use maturities of 1,2,5,7,10, and 20 years. Row (2) reports bootstrapped critical
 values (CV) for the ENC-NEW statistic at the 95% confidence level (see the Online Appendix for implementation
 details). Rows (3) and (4) show the ratio of mean squared errors for the cycles and forward-rate models, Row (3)

 with six cycles and Row (4) with two cycles, ct,ct . Rows (5)—(8) report the out-of-sample R2, R5^ , for two and
 S ' ' Dmwo^V ^fi\r0rvrtrtth0™if _nf comnlo »2 Z>2

 six cycles, forwards rates and the forward-spot spread, respectively. For forward-rate and six-cycles specifications

 we use the same six maturities, for two cycles we use c\1 ^ and q as in the construction of forecasting factor cft.

 The forward-spot spread used for predicting the bond return with maturity n is constructed as

 retain the frequency at which survey forecasts are reported to avoid look
 ahead bias resulting from interpolation. We also construct the cycle factor
 with xfpl corresponding to the sample period and frequency of the survey,
 to allow comparison with previous sections, and report the corresponding R2
 (row "R2{cf)")• In rows labeled "pval Wald (r)" we report the p-values for a
 test that the coefficient on the alternative trend-inflation measure, %, is equal to

 zero. The test is based on regression of excess return on yt, y, ' ' and r, analogous
 to specification given in Equation (24).

 Overall, survey-based measures of expected inflation bring in new
 information to the regressions in addition to the information contained in yields.
 We reject the null that the loading on survey expected inflation is zero at the 1%
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 Table 10
 Different measures of trend inflation

 M) _,(5) „(10) rM) r,<5) „(10)

 A. 10-year-ahead expected inflation from surveys

 Al. CPI infl. Livingston + BCEI A2. CPI infl. BCEI (5-10Y)
 1979-2011, semiannual (65* obs.) 1979-2011, semiannual (62* obs.)

 (1 )cf,  0.60 0.60  0.64  0.63  0.61 0.66

 (2.39) (3.05)  ( 3.62)  (2.85)  (3.35) (3.66)
 (2) R2  0.35 0.35  0.40  0.38  0.36 0.43

 (3) pval Wald (?) 0.00 0.00  0.00  0.00  0.00 0.00

 (4) /?2(r/)  0.23 0.36  0.45  0.24  0.37 0.47

 B. 1-year ahead expected inflation from surveys

 Bl. CPI infl., BCFF  B2. GDP deflator, SPF
 1984-2011, monthly (318 obs.)  1971-2011, quarterly (156 obs.)

 (1 )cf,  0.47 0.55  0.62  0.52  0.49 0.54

 (1.93) (2.51)  (2.60)  (2.68)  (3.04) (3.30)
 (2) R~  0.21 0.31  0.38  0.27  0.23 0.28

 (3) pval Wald (?) 0.02 0.01  0.01  0.00  0.00 0.00

 (4) R2(cf)  0.24 0.39  0.50  0.35  0.44 0.51

 C. Realized inflation measures, 1971-2011 (monthly, 470 obs.)

 CI. Current yoy core CPI infl. C2. Current yoy all-items CPI infl.

 OK/,  0.43 0.42  0.48  0.38  0.37 0.41

 (1.80) ( 2.25)  ( 2.54)  ( 1.60)  (2.01) (2.29)
 (2) R~  0.18 0.18  0.23  0.15  0.13 0.17

 (3) pval Wald (r) 0.13 0.09  0.05  0.10  0.08 0.05

 C3. MAgo of core CPI infl. C4. DMA of all-items CPI infl.

 (1) Cf,  0.63 0.63  0.68  0.57  0.60 0.66

 ( 3.56) (4.32)  (4.81)  ( 3.08)  (3.92) (4.53)
 (2) R2  0.39 0.40  0.47  0.32  0.36 0.43

 (3) pval Wald (?) 0.00 0.00  0.00  0.00  0.00 0.00

 Table 10 summarizes predictive regression using the cycle factor constructed with different measures of trend

 inflation. We use notation cft to indicate that the cycle factor is constructed using an alternative proxy to rfPI,

 distinguishing it from the cf, used above. The regression coefficients in Row ( 1 ) are standardized. Row (3) "pval
 Wald (r)" shows p-values for a test that the coefficient on the particular trend-inflation measure % is zero in a

 regression specified as in Equation (24), where excess return is projected on 1 \ yt and r,. All t-statistics and
 Wald tests are based on the reverse regression delta method. Because survey samples have different lengths and

 frequencies, in Row (4) of Panels A and B, we report the /?2 from cycle factor cft constructed with rfpl and
 sampled over the same period and frequency as a given inflation survey. Results in Panel A are based on long-term
 surveys (panel Al uses data from two surveys as merged by the Philadelphia Fed). Results in Panel B are for
 1-year ahead surveys, and in Panel C are for the realized inflation measures where yoy denotes year-over-year
 inflation. * The different numbers of observations in Panels Al and A2 are owing to the way Philadelphia Fed
 combines the two sources (in Panel A1 we gain two observations), and because of a missing BCEI survey in
 October 1998 (in Panel A2 we lose one observation).

 level or better in most cases. The predictive power of the cycle factor obtained
 with long-horizon surveys (Panel A) lines up closely with the results based on
 T(r/J/. Even though short-horizon inflation forecasts are also highly significant
 (Panel B), they deliver somewhat weaker predictability relative to long-horizon
 inflation forecasts. To understand the differences across survey horizons, we
 note that short-horizon surveys are typically less persistent and more volatile
 compared with long-horizon surveys or rrCP/, whereas evidence suggests that
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 transitory fluctuations in inflation in the last two decades do not pass through
 onto interest rates (Stock and Watson 2011 ; Ajello, Benzoni, and Chyruk 2012).

 Contrary to the survey-based results, conditioning on realized inflation (core
 or all-items) gives essentially the same amount of return predictability as
 the yields-only regressions do (Panel CI and C2 of Table 10). The loadings
 on current year-on-year inflation are marginally significant with p-values
 exceeding 5%.

 In Panel C, we also study two alterations to the baseline xfPI\ a simple
 60-month MA of core CPI inflation (Panel C3), and a DMA of all-items CPI
 inflation (Panel C4). In both cases, we find strong evidence of predictability
 and highly significant loading on the trend inflation (p-values below 0.1%). The
 DMA applied to all-items inflation delivers a 9% lower R2 on average across
 maturities than when constructed with core inflation, but the R2 is still robustly
 higher than it is in the yields-only regressions. As the source of the discrepancy,

 all-items and core inflation diverged visibly in the 2000s, owing to the elevated

 volatility of energy prices. Towards the end of our sample, rf PI from core
 inflation remained stable around 2%-2.5%, and surveys recorded essentially
 flat long-run inflation expectations, despite survey participants predicting all
 items inflation. In contrast, the DMA of all-items CPI inflation increased above

 3%. Both survey forecasts and the evidence of a limited pass-through of energy
 prices onto the yield curve in that period suggest that the private sector perceived

 the volatility of energy prices as a transitory phenomenon that does not alter the

 underlying inflation trend. Even though these arguments may speak in favor

 of using core CPI inflation to obtain rrc/>/, the main conclusions from the
 preceding sections remain valid with all-items CPI inflation, as well.

 The main conclusion from Table 10 is that our approach to estimating the risk
 premium variation holds for different measures of trend inflation, especially
 those capturing the low-frequency dynamics of inflation expectations.

 6.2 Long historical samples and short-horizon surveys
 The analysis up to this point has relied on a sample beginning in November
 1971, when bonds with maturities of 10 years and above become available,
 and which contain substantial information about the risk premium. For this
 reason, several studies have focussed on the post-1970 period (e.g., Cochrane
 and Piazzesi 2008; Duffee 2010; Le and Singleton 2013). Additionally, our
 rfpl proxy can only be constructed starting in 1967 because of the availability
 of the core CPI data. It is nevertheless informative to consider longer samples,
 as well. In this section, we report results going back to the beginning of the
 Fama-Bliss data set in 1952, spanning the entire period post Fed-Treasury
 Accord. As a measure of trend inflation, we use the 12-month-ahead median

 forecast of all-items CPI inflation (nonseasonally adjusted) from the Livingston
 survey (denoted as Liv,), which is the only inflation survey compiled over the
 entire sample. Throughout, we do not use any interpolated data, and we run
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 regressions at the semiannual frequency at which the Livingston survey is
 conducted (in June and December each year).

 Table 11 reproduces the key results from the previous sections in this long
 sample, and confirms our main conclusions. Panel A reports regressions of

 rx,+1 on >v ' \ y and Livr, analogous to Regression (24), with and without
 coefficient restrictions. All three variables are highly statistically significant
 and the unconstrained regressions is selected as the preferred model by the BIC
 (Column (1)). Restricting the coefficient on y, to zero removes essentially all
 the predictive power of the regression (Column (2)). This implies that expected
 inflation and the 1-year yield capture the EH term that is nearly orthogonal to
 the risk premium, in line with our previous conclusions.18

 Panels B and C of Table 11 compare the predictability of individual bond
 excess returns using cycles and yields, respectively. The cycle factor is a
 significant predictor of bond excess returns at all maturities (Rows 1-2, Panel
 B). It explains effectively the same amount of excess return variation as the
 less parsimonious yields-plus-Liv, specification (Row 3). For each maturity,
 we strongly reject the null hypothesis of no predictability (Row 4) and, more
 importantly, the null that the loading on expected inflation, Livr, is zero
 (Row 5). In sample, the cycles' approach explains on average 10% more of
 return variation than the yields-only (CP) approach. The differences become

 larger out of sample, where cycles deliver positive R^s ranging from 16% for OOS

 the 2-year bond to 9% for the 5-year bond, whereas yields-only regressions
 deliver negative R^os ranging from —15% to —9% for the corresponding
 maturities (Row 6). Finally, including the past smoothed Tbill rate, in analogy
 to Regression (26), does not contain additional information about excess bond
 returns over and above expected inflation (Row 7).

 In Panel D of Table 11, we estimate bivariate predictive regressions of
 returns confirming that cf, drives out the predictive content of the CP factor.
 The explanatory power of the regression remains unchanged relative to the
 univariate case with cft only.

 Compared with the previous sections, the tests summarized here are
 conservative in several respects. We rely on short-horizon survey forecasts
 of all-items inflation that are likely to overstate the volatility of trend inflation
 that is reflected in the yield curve. We also use yields with a maximum maturity
 of 5 years. Even though these results confirm all of our main conclusions, the
 predictability in terms of R2 is more conservative. Yet, it is clearly above the
 95 th quantile of R2 obtained under the null of EH. We interpret it as a benchmark

 for a plausible degree of return predictability in the Treasury bond market.

 18 The marginal significance of the regressors in Column (2) is driven by the inclusion of excess returns with short
 maturities (the 2-year bond) in the rx. For the maximum maturity in this sample period (i.e., 5 years), we fail to
 find statistically significant predictability of excess returns with Livingston expected inflation and 1-year yield.
 The results for individual maturities are not reported for brevity.
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 Table 11

 Long sample with Livingston inflation survey, 1952-2011

 A. Predictive regressions: rxt+\ =dQ+d\y^ +d2yt+d^Li\t+£t+\

 (1)  (2)  (3)  (4)

 -0.65  0.15  -  0.66

 (-2.83)  (2.26)  -  ( -3.01)

 yt  0.93  -  0.27  0.74

 (3.70)  -  (3.09) (3.12)
 Li V/  -0.26  -0.17  -0.27  -

 (-3.12)  (-2.36)  (-3.14)  -

 R2  0.28  0.05  0.15  0.15

 Wald test  15.37  5.83  10.39  9.73

 pval  0.00  0.05  0.01  0.01

 Rel.prob. (BIC)  1.00  0.00  0.00  0.00

 rx( 2)  „( 3)  rx<4>  „<5)  rx( 2)  «(3>  ^(4)  r*<5>

 B. Cycle factor, cf  C. Cochrane-Piazzesi (CP) factor

 (1 )cf,  0.54  0.53  0.54  0.54 (I) CP,  0.42  0.44  0.46  0.45

 (3.36)  (3.71)  (3.99)  (4.20)  (2.64)  (3.55)  (3.84)  (3.92)

 (2) «2(c?)  0.29  0.28  0.29  0.29 (2 )R2(CP)  0.17  0.19  0.20  0.19

 (3) K2(5yld+Liv)  0.27  0.29  0.29  0.29 (3) A'^iSyld)  0.15  0.16  0.17  0.17

 (4) Wald, x2(6)  13.59  20.48  20.56  24.17 (4)Wald, x2(5)  7.72  15.31  16.35  19.16

 pval  0.03  0.00  0.00  0.00 pval  0.17  0.01  0.01  0.00

 (5) Wald (Liv=0)  7.38  8.10  8.23  9.96  -  -  —

 pval  0.01  0.00  0.00  0.00  -  -  -  -

 (6) «5oS(2 eye)  0.16  0.09  0.11  0.09 (6) (5 fwd)  -0.15  -0.12  -0.10  -0.09

 (7) pval(r>3m)  0.24  0.20  0.16  0.13  -  -  -  -

 R2(Uv+ry3m) 0.28  0.27  0.28  0.29  ~  -  " iiii ill

 D. Bivariate regressions with CP and cf

 „(2)  r*<3>  r*(4)  rx&

 eft  0.52  0.46  0.46  0.49

 (2.77)  (2.51)  (2.62)  (2.84)
 CPt  0.04  0.10  0.11  0.08

 (-0.90)  (0.11)  (0.14)  (0.16)

 R2  0.28  0.28  0.29  0.29

 Table 11 reports results for predictive regressions over the 1952-2011 sample. To construct cycles, we use 1
 year-ahead inflation forecasts from the Livingston survey ("Liv/"). Yields are from the Fama-Bliss data set, with
 maturities available from 1 though 5 years. The data are semiannual becuase of the frequency of the Livingston
 survey (120 observations). Panel A reports the regressions analogous to Equation (24), where in Columns (2)
 (4) some coefficients have been restricted to zero. In Panels B and C the rows are: (1) standardized regression

 coefficient on the single forecasting factor, (2) in-sample R2 for the single factor, (3) R2 for unconstrained
 regressions on five yields with and expected inflation ("5 yld+Liv" in Panel B) and only five yields ("5 yld"
 in Panel C), (4) Wald statistic testing the null of no predictability, (5) Wald statistic testing zero coefficient on

 expected inflation (only Panel B), (6) out-of-sample R2, /?oos' according to specification with c^\c in Panel B
 and five forwards in Panel C. The out-of-sample exercise uses a burn-in period of 20 years (i.e., 40 semiannual
 observations), (7) statistics from regressions with two trends (inflation and smoothed past short rate) as in Equation

 (26), where zy2m is the DMA of the 3-month T-bill rate constructed as in Equation (19) on monthly data and

 is sampled semiannually. We only report the p-value of the corresponding coefficient, pval(r^3m), and R2 from
 the regression. Panel D estimates a bivariate regression with CP and cft factors included jointly, and coefficients
 are standardized. The t-statistics in parentheses and Wald tests are obtained from the reverse regression delta
 method.

 6.3 Risk premiums implied by interest rate surveys
 Finally, we use direct forecasts of interest rates from surveys (SPF and Blue
 Chip) to compare the survey-implied expected returns with our measure of
 the risk premium—the cycle factor. Interest rate surveys are available from
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 the 1980s (the start date depends on the source), and they differ in terms
 of maturities of interest rates being forecast, horizons, and the frequency at
 which they are compiled. For brevity, the details on the survey data, and
 how we construct the risk/term premium using them, are reported in the
 Online Appendix. Because surveys reflect real-time expectations, for sake

 of comparison, we construct the cycle factor also in real time, cft (i.e.,
 reestimating cycles and Equation (27) recursively month by month). We

 . jit

 obtain cft with two zero-coupon yield data sets: CMT and Fama-Bliss. The
 correlation among various survey-based risk premium measures ranges from
 0.36 for 10-year maturity to 0.75 for 2-year maturity. The correlation of survey

 ht

 based measures with the cft variable ranges from 0.34 for 10-year maturity to
 0.76 for 2-year maturity (see the Online Appendix for details). The consistently
 positive correlations between the statistical and the survey-based risk premiums
 are in contrast with the findings in the equity literature. In particular, Greenwood

 and Shleifer (2013) show that, even though expected equity returns inferred
 from various investor surveys are positively correlated with each other, they
 are negatively correlated with the standard model-based measures of expected
 returns such as the dividend-price ratio.

 In Table 12, we compare the properties of expected returns from the Blue
 Chip Financial Forecasts (BCFF) survey with expected returns implied by the
 cycle factor.19 Expected returns from the survey are obtained as:

 Est{rx^)=-(n -1 )Est{y<f-l))+ny<tn)-y<t'\ (39)

 where Est(-) is the survey-based expectation. We report results for « = 2,5,10.
 Panel A of Table 12 confirms the positive correlation of the cycle factor with the

 expected return from the survey, which is highest at the 2-year maturity. Panel

 B displays the volatility of expected returns fitted with cft and compares it to
 the volatility of survey-based expected returns. The row labeled "ratio" gives
 the ratio of the respective standard deviations. Expected excess returns implied

 by cfT have a lower volatility than the survey has at the 2-year maturity and
 a higher volatility than the survey has at the 10-year maturity, but overall they
 are of comparable magnitudes.

 Our previous discussion shows that the risk premium is the least persistent
 component in yields and, relative to the EH term, it accounts for a smaller
 portion of the yield variance. Therefore, its estimation can be particularly
 sensitive to measurement error. The measurement error in survey-implied
 expected returns is likely to be nonnegligible because expected returns reflect
 small spreads between yields scaled by duration, as visible in Equation (39).

 19 BCFF provides 1-year ahead forecasts of yields with maturities 3 and 6 months, and 1, 2, 5, 10, and 30 years.
 The data is available monthly from January 1988. Because forecasters predict CMT yields (i.e., coupon yields),
 we construct the expected zero-coupon yields with a yearly spacing of maturities by bootstrapping the survey
 expectations.
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 Table 12

 Comparison of the cycle factor and survey-based expected returns

 CMT  FB

 2Y 5Y  10Y  2Y  5Y  10Y

 A. Correlation of survey expected returns with the cycle factor

 corr (BCFF, cfRT) 0.59 0.54
 pval (0.00) (0.00)

 0.40

 (0.00)
 0.73

 (0.00)
 0.59

 (0.00)
 0.49

 (0.00)

 B. Standard deviations of expected returns

 st.dev. (cfRT), % p.a. 0.55 2.17
 ratio 0.90 1.27

 4.46

 1.36

 0.52

 0.86

 1.85

 1.09

 3.86

 1.18

 C. R~ from predictive regressions of bond returns

 R2(BCFF) 0.05 0.05
 R2(c/fir) 0.16 0.24

 0.03

 0.33  0.15  0.17  0.25

 The table compares the survey-based expected bond excess returns with the cycle factor, cft , constructed
 recursively in real time. Survey-based expected returns are obtained from the Blue Chip Financial Forecasts
 (BCFF), available monthly for the sample period from January 1988 through December 2010. The results
 are presented for the cycle factor constructed using two data sets: CMT and Fama-Bliss (FB). CMT contains
 maturities up to 20 years, whereas the longest maturity in FB is 5 years. Panel A reports the unconditional
 correlation between the survey-based risk premiums and the cycle factor. Panel B reports the standard deviation
 of expected returns from the survey, and expected returns fitted by the cycle factor regression. The row labeled
 "ratio" reports the ratio of the standard deviations of expected return fitted with the return forecasting factor

 to the expected return from the survey. A ratio below one means that cff1" underestimates the volatility of the

 expected return relative to the survey. Panel C reports the R2 from the predictive regression of realized returns. In
 both CMT and FB panels, we predict returns computed from the CMT zero-coupon yields to be able to consider

 the 10-year bond. Thus, CMT and FB panels differ by the dataset used to construct the cffT factor, but predict
 the same excess returns. All results are for monthly data and sample period 1988-2010, corresponding to survey
 availability.

 Panel C of Table 12 presents the R2 from the predictive regressions of realized
 excess returns on the expected excess returns from the BCFF survey. Indeed,
 the return predictability obtained using surveys is a magnitude lower than the

 one obtained with cft over the same sample period, suggesting that surveys
 provide a noisier measure of the bond risk premium than the cycle factor does.

 7. Conclusions

 We construct a measure of variation in expected returns on Treasury bonds,
 starting from the basic decomposition of yields into the EH term and the
 term premium. We separate two effects in yields across maturities: a common
 slow-moving part resulting from expected inflation, and an orthogonal, more
 transitory variation specific to each maturity, which we label as cycle. We
 show empirically that two elements—expected inflation and the short-maturity
 cycle—can be used to control for the expectations hypothesis term and that
 neither of them forecasts future returns. The short-maturity cycle covaries with
 measures of the ex-ante real rate. At longer maturities, the cycles embed both
 short-rate expectations and the risk premium, and their predictive power for
 bond returns increases with the maturity. Using this observation, we construct

 the return forecasting factor, which we call the cycle factor. The cycle factor
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 forecasts bond excess returns across the entire maturity spectrum, both in and
 out of sample, subsuming other standard bond predictors used in the literature
 such as the term spread or the linear combination of forward rates.

 We leave open the question of the economic determinants of the risk premium

 in Treasury bonds. The high level of predictability and the relatively rapid mean
 reversion in the risk premium that we identify make these results difficult to
 generate within standard consumption-based asset pricing models. Yet, our
 findings are consistent with the observation in the literature that a large share
 of variation in the Treasury risk premium is orthogonal to macro variables and
 standard measures of risk (e.g., Duffee 2013). Reconciling the empirical risk
 premium dynamics with macro aggregates and with the special features of the
 Treasuries such as safety and liquidity (Krishnamurthy and Vissing-Jorgensen
 2012) or compensation for bearing duration risk (Hanson 2014), present a
 promising avenue for future research.
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