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ABSTRACT

Using a novel no-arbitrage model and extensive second-moment data, we decompose
conditional volatility of U.S. Treasury yields into volatilities of short-rate expectations
and term premia. Short-rate expectations become more volatile than premia before
recessions and during asset market distress. Correlation between shocks to premia
and shocks to short-rate expectations is close to zero on average and varies with the
monetary policy stance. While Treasuries are nearly unexposed to variance shocks,
investors pay a premium for hedging variance risk with derivatives. We illustrate the
dynamics of the yield volatility components during and after the financial crisis.

IN THIS PAPER, WE CHARACTERIZE THE DYNAMICS of the conditional second moments
in the U.S. Treasury market in terms of volatilities of short-rate expectations
and term premia, as well as their covariance. A vast literature decomposes
the information contained in nominal Treasury yields to study term premia
and short-rate expectations. With a few important exceptions,1 much of the
recent work has approached this question assuming constant volatility, largely
due to tractability and the known difficulties with the joint modeling of the
first and second moments of yields. Consequently, less is known about the
economic properties of Treasury market volatility. Intuition suggests, however,
that volatility can reveal new information that is hard to extract from yield
levels alone. For example, to the extent that expected short rates reflect market
expectations about the path of monetary policy, their volatility can reveal the
amount of uncertainty surrounding that path. Further, while it is a priori
unclear how term premia and expected short rates covary over time, studying
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their joint conditional dynamics can cast light on the dependence between
shocks influencing short- and long-term yields. These and related questions
underscore the importance of understanding the sources of volatility in the
yield curve.

Relative to previous literature, our approach introduces two new elements.
First, to identify the empirical properties of interest rate volatility, we rely on
nearly 20 years’ worth of high-frequency data from the U.S. Treasury mar-
ket, which we use to construct the realized covariance matrix of zero-coupon
yields across maturities. This step is important because, by making volatil-
ity essentially observable, we mitigate concerns about its misspecification. We
augment our analysis with information from the options market, which reflects
risk-adjusted expectations of volatility at several points along the yield curve.
Second, we propose a no-arbitrage term structure model that accommodates
multivariate dynamics of yield volatilities found in the data. As a new feature
of our approach, we model the entire stochastic covariance matrix of risks in
the yield curve without sacrificing the flexibility that a Gaussian model offers
for studying the term premia and short-rate expectations. To reliably identify
the parameters underlying our volatility decomposition, we estimate the model
with interest rate surveys, yields, and their realized and implied volatilities. We
argue that informative second-moment data and a flexible model complement
each other, and both are necessary elements of our analysis.

Interest rate volatility moves around due to changes in volatilities of short-
rate expectations, term premia, and their covariance. Using our model, we are
able to analyze the importance of each of these terms. We show that, while
volatility of short-term yields is mostly determined by the component due to
short-rate expectations, the contribution of term premium volatility increases
with maturity. Volatile short-rate expectations rather than term premia pro-
duce the well-known hump in yield volatilities at maturity of two to three years.
This is consistent with the view shared by practitioners and policy makers that
this segment of the yield curve is sensitive to market expectations about the
future short rate and, by extension, about the path of monetary policy. In terms
of time-series properties, we find that the short-rate expectations component
of volatility is shorter lived and less persistent, with a half-life below 10 weeks,
which is less than half that of the term premium volatility.

Short-rate expectations become increasingly volatile in anticipation of re-
cessions and during periods of distress in asset markets, which in our sample
coincide with monetary policy easing. The reaction of term premium volatility
is relatively more muted and has a less clear business cycle pattern. A case
in point is the financial crisis of 2007/09. Volatility of short-rate expectations
rises dramatically in the early summer of 2007 when symptoms of the subprime
crisis appear and starts to decline as the Fed enters the zero lower bound in
December 2008. At the same time, term premium volatility begins to rise only
in the fall of 2008 after the Lehman collapse, and remains elevated though the
end of our sample in December 2010. Its peak in March 2009 coincides with the
Fed announcing an extension of the quantitative easing (QE) to include long-
term Treasuries. These results indicate that, in the aftermath of the financial
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crisis, the Fed was able to reduce uncertainty about the path of the short rate,
and the QE policies have led to an increase in the volatility of the term premia.

By modeling the stochastic covariance of risks in the yield curve, we are
able to study the comovement between shocks to short-rate expectations and
shocks to term premia over time. The model implies that, over the last two
decades, the conditional correlation between those shocks is on average close
to zero and varies over time in relation to the stance of the monetary policy. For
example, the correlation increases during the long easing episode in 2000/03
and declines afterwards. The model interprets Greenspan’s conundrum period
(i.e., the apparent lack of reaction of long-term interest rates to the tightening
of monetary policy in 2004/06) as a gradual decline in the correlation between
shocks to short-rate expectations and shocks to term premia.

As part of our analysis, we study how investors price risks in Treasury bonds
and in the fixed income market more broadly. The model distinguishes between
shocks to the levels and shocks to the variances of yields, and thus allows us to
analyze both the term premia and the variance risk premia. We find that Trea-
sury yields are nearly unexposed to the variance shocks and thus investors in
Treasury bonds are compensated almost exclusively for facing the yield curve
shocks. While this finding is consistent with earlier literature (summarized
below) documenting that Treasury yields do not span volatility risk, it does not
imply that volatility risk is not priced in the fixed income market. Indeed, the
model suggests that investors are willing to pay a large premium for hedging
variance risk via interest rate derivatives, with the average conditional Sharpe
ratio reaching up to −1.7 per annum. We decompose the variance risk premium
into compensation for facing three types of shocks: shocks to the variance of
short-rate expectations, shocks to the variance of term premia, and shocks to
the corresponding covariance. The decomposition attributes the main source
of the premium to shocks associated with the variance of short-rate expecta-
tions and shocks to the covariance between short-rate expectations and term
premia. To the extent that volatility of short-rate expectations reflects uncer-
tainty about the path of monetary policy, our results suggest that hedging such
uncertainty is an important consideration for fixed income investors.

Much of the term structure literature studies low-dimensional affine term
structure models (ATSMs) with a single factor driving the second moments
of yields, such as A1(3) or A1(4) models in the classification of Dai and Sin-
gleton (2002).2 When estimated using only yield data, volatility dynamics im-
plied by those models correspond poorly to model-free volatility measures. The
misspecification becomes especially visible at long maturities and in the post-
Volcker period, where model-implied volatilities have been found to be either
uncorrelated or negatively correlated with realized volatility or GARCH-type
estimates (Collin-Dufresne, Goldstein, and Jones (2009), Jacobs and Karoui
(2009)). Based on several different models with a single volatility factor esti-
mated on Japanese yields, Kim and Singleton (2012) report similar difficulties

2 Notation Am(n) means an affine model with n factors in total, of which m are square-root
(positive) processes and n − m are conditionally Gaussian.
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in fitting volatility at long maturities and conclude that more than one volatility
factor may be necessary to match the data. Using interest rate caps in a 1995
to 2006 sample, Almeida, Graveline, and Joslin (2011) show that derivatives
help identify volatility states in an affine setting. However, given their focus on
three-factor models, the relative errors they report for fitting caps are large.

There are few established results about the economic sources of interest rate
volatility in the literature. Collin-Dufresne and Goldstein (2002, CDG) argue
that volatility risk cannot be hedged by Treasury bonds and thus volatility
states are difficult to extract from the term structure of interest rates alone—a
phenomenon they call “unspanned stochastic volatility” (USV). Andersen and
Benzoni (2010) confirm this finding using realized volatility estimated from
high-frequency Treasury yields.3 To break the spanning of volatility risk that
arises in standard ATSMs, CDG propose a set of parametric USV restrictions.
However, Joslin (2014) shows that those restrictions constrain other aspects of
yield dynamics in a way that is empirically undesirable and is rejected by the
data.

We contribute to this discussion by proposing a term structure model that,
consistent with the data, accommodates the multivariate properties of yield
volatility. Rather than imposing USV-type restrictions, we estimate the model
using information obtained from the realized and implied second moments of
yields. We find that together these two elements—a flexible model and our
data—alleviate the problems documented in previous studies.

A related literature introduces stochastic volatility into macro-finance term
structure models, but understanding the sources of yield volatility per se is
not its direct focus (e.g., Haubrich, Pennacchi, and Ritchken (2012), Campbell,
Sunderam, and Viceira (2013)). Here, our objective is to characterize the yield
volatility that arises due to the variation in term premia, short-rate expecta-
tions, and their conditional covariance, as well as to study how investors price
shocks to each of those components.

The remainder of this paper is organized as follows. Section I discusses our
data and the construction of the realized and implied yield volatility measures.
Section II presents the model, and Section III verifies its empirical performance
in terms of time-series and cross-sectional fit to volatilities. Section IV decom-
poses yield volatilities across maturities into components induced by short-rate
expectations and term premia. Section V studies the market pricing of shocks
to the levels and variances of yields, respectively. Section VI contains additional
robustness results. Section VII concludes.

3 Several other papers document a weak relation between the bond volatility, realized as well
as derivative-based, and the spot yield curve factors. See, for example, Heidari and Wu (2003) and
Li and Zhao (2006).



Information in the Term Structure of Yield Curve Volatility 1397

I. Data

A. High-Frequency Bond Data and Zero-Coupon Yield Curve Tick-by-Tick

We obtain 19 years’ worth of high-frequency data on the pricing of U.S. Trea-
sury securities from January 1992 through December 2010 by splicing his-
torical observations from two inter-dealer broker platforms: GovPX (1992:01
to 2000:12) and BrokerTec (2001:01 to 2010:12).4 The merged data set cov-
ers about 60% of the transactions in the secondary U.S. Treasury market.
GovPX comprises Treasury bills and bonds with maturities of three, six, and
12 months, as well as two, three, five, seven, 10, and 30 years. BrokerTec con-
tains only Treasury bonds with maturities of two, three, five, seven (in part of
the sample), 10, and 30 years. In the GovPX period, we identify on-the-run se-
curities and use their mid-quotes for further analysis. Unlike GovPX, which is
a voice-assisted brokerage system, BrokerTec is a fully electronic trading plat-
form attracting vast liquidity and thus allowing us to consider traded prices
of on-the-run securities. Roughly 95% of trading occurs between 7:30AM and
5:00PM EST (e.g., Fleming (1997)), which we treat as the trading day. The raw
data set contains coupon bonds. We sample bond prices at 10-minute intervals
taking the last available price within the interval, and convert them into zero-
coupon yields following the procedure of Fisher, Nychka, and Zervos (1994).
More information about our data and technical details on the construction of
zero-coupon yields are available in the Internet Appendix.5

B. Realized Yield Covariance Matrix

Observing the zero-coupon yield curve at a high frequency allows us to esti-
mate the realized covariance matrix of yields. Let yt be the vector of zero-coupon
yields with different maturities observed at time t. Time is measured in daily
units. The realized covariance matrix is constructed by summing the outer
products of a vector of 10-minute yield changes, and aggregating them over the
interval of one day [t, t + 1]:

RCov(t, t + 1; N) =
∑

i=1,...,N

(
yt+ i

N
− yt+ i−1

N

) (
yt+ i

N
− yt+ i−1

N

)′
, (1)

where N = 58 is the number of equally spaced yield observations per day t
at the 10-minute sampling, and i denotes the ith change during the day. For
frequent sampling, the quantity (1) converges to the quadratic co-variation
of yields (Jacod (1994), Barndorff-Nielsen and Shephard (2004)). Weekly or
monthly realized covariances follow by aggregating the daily measure over the
corresponding time interval. To obtain annualized numbers, we multiply RCov

4 GovPX started operating in 1991. See Mizrach and Neely (2006) and Fleming and Mizrach
(2009) for a description of the BrokerTec and GovPX platforms.

5 The Internet Appendix is available in the online version of the article on the Journal of Finance
website.
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Figure 1. Time series of yields and volatilities. The figure plots the time series of yields
(Panel A), realized volatilities (Panel B), and implied volatilities (Panel C). We superimpose implied
volatilities with the MOVE index. Yields are reported in percentage per annum and volatilities in
basis points per annum. The data are sampled weekly. The sample covers the 1992:01 to 2010:12
period, except for the two-year implied volatility, which starts in March 2006.

by 250 for the daily, 52 for the weekly, and 12 for the monthly frequency.6

Realized volatility is the square root of the realized variance. In construct-
ing (1), we consider yields with maturities of two, three, five, seven, and 10
years, which attract most of the liquidity in the secondary bond market (e.g.,
Fleming and Mizrach (2008)). Figure 1 plots zero-coupon yields (Panel A) and

6 In the online Appendix, we verify the robustness of this estimator, and compare it to alterna-
tives proposed in the literature (e.g., Hayashi and Yoshida (2005)).
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realized volatilities (Panel B) for maturities of two, five and 10 years at a weekly
frequency.

To ensure that our volatility measures reflect views of active participants
in the Treasury market rather than institutional effects, we limit construction
of RCov to within-day observations, excluding the volatility outside the U.S.
trading hours.7 Further, we focus on maturities of two years and above. Over
our sample period, the very short end of the yield curve (T-bills) exhibited a
gradual decline in trading activity, with high-frequency data available only
until March 2001.8 Moreover, dynamics of the short-end of the curve have been
shown to be confounded by money market noise (Piazzesi (2005)), T-bill-specific
factors not shared by longer-maturity Treasury securities (Duffee (1996)), and
institutional effects (Hilton (2005)), distortions not directly relevant to the
analysis we perform.

C. Implied Interest Rate Volatilities

We obtain implied volatilities from the end-of-day prices of individual options
on two-, five- and 10-year Treasury bond and note futures and the correspond-
ing underlyings from the Chicago Mercantile Exchange (CME). For maturities
of five and 10 years, we are able to construct implied volatilities covering the en-
tire period from 1992 through 2010. For the two-year maturity, we can reliably
construct implied volatilities beginning only in March 2006. The underlying
of the option is futures on a hypothetical Treasury bond or note that pays
coupons. While we label the implied volatility using the maturity of the under-
lying bond (e.g., two-year implied volatility refers to the volatility from options
written on the two-year bond futures), for model estimation in Section II.C we
convert it to a zero-coupon equivalent. We use options that are closest to at-
the-money and to the one-month maturity, as those represent the most active
part of the market and provide an accurate approximation to the risk-neutral
expectation of the yield volatility during the following month (e.g., Carr and
Wu (2006)). Implied volatilities are obtained using the Black model. Similar to
realized yield volatilities, we report annualized implied volatilities on a yield
basis. This convention is also followed by the bond market volatility benchmark
index, the Merrill Lynch Option Volatility Estimate (MOVE), which averages

7 We observe several spikes in the between-day volatility, which we cannot relate to any major
news in the U.S. market. To account for the total magnitude of volatility, we add to the within-day
number the squared overnight yield change from close (5:00PM) to open (7:30AM). We then compute
the unconditional average of the total and within-day RCov, and each day scale the within-day
RCov dynamics by the total-to-within ratio. This procedure follows Andersen and Benzoni (2010).

8 This is when the GovPX sample ends and we switch to the BrokerTec database. BrokerTec
does not contain maturities below two years. Alternatively, to cover the short-maturity segment
one could consider high-frequency T-bill futures. However, the number of trades in the T-bill
futures contract at the Chicago Mercantile Exchange has consistently declined over our sample
period, reaching as few as five trades per day on average in 2003 (see the Internet Appendix for
details). For this reason, standard sources of high-frequency data (e.g., Tickdata.com) have stopped
supplying T-bill futures after 2003, quoting low secondary market activity.
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implied volatilities across several bond maturities.9 Panel C of Figure 1 plots
the implied volatility series and superimposes them with the MOVE index. De-
tails about options data, conversions, and robustness of the implied volatility
series are contained in the Internet Appendix.

D. Descriptive Statistics

Table I reports summary statistics for zero-coupon yields (Panel A), real-
ized and implied volatilities (Panel B), and unconditional correlations between
yields and volatilities (Panel C). The data are sampled at the last business day
of a week. Relative to the implied volatilities, realized volatilities are less per-
sistent and have a higher unconditional standard deviation. This is consistent
with implied volatilities reflecting risk-adjusted conditional market expecta-
tions.10

Panel C of Table I points to a slightly negative correlation between the level
of yields and volatilities in our sample. This is different from the Cox, Ingersoll,
and Ross (CIR, 1985) model, which predicts that volatility is high whenever the
short-term rate is high. While this prediction had empirical support in the high-
inflation period of the late 1970s and early 1980s (Chan et al. (1992)), recent
USV literature argues that the relationship between yields and volatilities is
weak. Our estimates are broadly consistent with this conclusion.

The bottom section of Panel C reports unconditional correlations between
realized and implied volatilities and the MOVE index. The lowest correlation
is 0.51 between the 10-year implied and the two-year realized volatility. The
correlation between MOVE and our implied volatility series exceeds 0.9, except
for the two-year maturity where we cover only the recent part of the sample
due to data limitations.

Finally, we find that, similar to yield levels, variation in yield volatilities can
be described by three factors. The first three principal components explain 90%,
7%, and 1.5% of the realized volatilities with maturities between two and 10-
years, and 79%, 13%, and 5% of realized volatilities jointly with the five- and
10-year implied volatilities. At the weekly frequency, the first three principal
components of realized volatilities explain about 50% of the variation in implied
volatilities on average across maturities. This share increases to about 70%
when we smooth realized volatilities with a four-week moving average.

9 MOVE is a weighted average of implied volatilities of one-month options on Treasury bonds.
The weights are 20%, 20%, 40%, and 20% for the two-, five-, 10-, and 30-year maturities, respec-
tively. Options used by MOVE are written on cash bonds rather than the Treasury futures that we
use. They are traded on an OTC basis, and are therefore less liquid. The data are available only
from proprietary sources such as large broker dealers.

10 Since implied volatilities have coupon bonds as the underlying, their mean levels are not
directly comparable to the realized volatilities that pertain to zero-coupon yields. While this fact
complicates inference about the variance risk premium using raw data, we are able to study the
properties of this premium based on the model we introduce below.
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II. The Model

We propose a no-arbitrage model for the joint dynamics of yields and their
time-varying second moments. We introduce multiple factors in yield volatili-
ties, and allow for priced yield and volatility risks. Although the model is cast
in reduced form with latent states, it allows us to study key endogenous ob-
jects determining the term structure: term premia, expected short rates, as
well as their conditional second moments, which are the focus of our empirical
analysis.

Section II.A presents the baseline specification of the model. Section II.B
discusses our modeling choices and how the model relates to the literature.
Section II.C outlines the estimation approach. Technical details and formulas
are relegated to the Internet Appendix.

A. The No-Arbitrage Framework: Baseline Specification

Our framework belongs to the affine class of term structure models. We
distinguish between two types of risks, which we term the yield curve (Yt) and
the volatility (Vt) factors. Their physical dynamics are given by

dYt = (μY + KY Yt) dt + �Y (Vt)dZP
t , (2)

dVt = (
��′ + MVt + Vt M′) dt +

√
VtdWP

t Q+ Q′dWP′
t

√
Vt, (3)

where Yt is an n-dimensional vector, Vt is an m× m matrix. Shocks ZP
t and WP

t
are an n-dimensional vector and an m× m matrix of independent Brownian
motions under the physical measure P. Drifts are characterized by an n-vector
μY , n × n matrix KY , m× m matrices M and Q of parameters.

We depart from the affine specification of Duffie and Kan (1996) and Dai and
Singleton (2000) in how we model the conditional second moments in equation
(3). The Vt process, introduced by Bru (1991), is a matrix-valued extension
of the univariate square-root process common in finance applications (e.g.,
Cox, Ingersoll, and Ross (1985), Heston (1993)).11 It offers a parsimonious
representation of the variance-covariance matrix of shocks in the yield curve.
To ensure that Vt remains positive-definite, we impose ��′ = kQ′Q, with scalar
k ≥ m+ 1 (Mayerhofer, Pfaffel, and Stelzer (2011)).

In the baseline specification used in our empirical analysis, we consider three
yield-curve factors summarized by Yt = (X′

t, ft)′, where Xt is a two-dimensional
vector with dynamics

dXt = (μX + KXXt)dt +
√

VtdZP
X,t, (4)

11 The Vt process, the so-called Wishart process, has been introduced to finance by Gourieroux
(2006) and Gourieroux, Jasiak, and Sufana (2009). In an asset pricing context, Buraschi, Porchia,
and Trojani (2010) use the Wishart process in a portfolio choice problem to study covariance
hedging.
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and therefore the dimension of Vt is 2 × 2 (i.e., m = 2). The third yield curve
state, ft, has Gaussian dynamics

d ft = (μ f + K f XXt + K f ft)dt + σ f dZP
f ,t, (5)

where we allow Xt to impact the conditional expectation of ft through the drift.
The terms K f and σ f are scalars, K f X is a 1 × 2 vector, and ZP

f ,t is a Brownian
motion independent of all other shocks in the economy. In the notation of
equation (2), �Y (Vt) is a block-diagonal matrix with

√
Vt and σ f on the diagonal.

This formulation allows direct interpretation of Vt as a covariance matrix of
shocks to Xt. With Vt of the form

Vt =
(

V11,t V21,t
V21,t V22,t

)
, (6)

the diagonal elements V11,t, V22,t determine the conditional variances of the
yield-curve factors, whereas V21,t determines their conditional covariance and
has unrestricted sign.12 The difference between (6) and the standard affine
specification is that in the latter case conditional correlations between yield
curve states, and thus various model-implied quantities in the yield curve, are
fixed linear combinations of positive (square-root) processes. To compare the
two approaches, in Section VI.C we estimate and study the implications of an
A2(4) model.

Specifications (4) and (5) are empirically motivated. The combination of the
dynamics of Xt and ft provides scope to fit the yield curve, in line with evidence
in the literature that three factors are necessary to describe the cross-section of
interest rates (e.g., Litterman and Scheinkman (1991)). In terms of volatilities,
we focus on matching the second moments of yields with intermediate to long
maturities, whose variation we can observe with the support of high-frequency
data and options. Accordingly, when the model is confronted with the data, the
Xt factors drive most of variation of yields with intermediate to long maturities,
while ft traces the variation at the short end of the yield curve. Extensions to
this setup are discussed in Section II.B and in the Internet Appendix.

To close the model, we specify the short rate and the market prices of risk.
The short rate is an affine function of Xt and ft,

rt = γ0 + γ ′
XXt + γ f ft = γ0 + γ ′

Y Yt, (7)

with γY = (γ ′
X, γ f )′, and the stochastic discount factor has the form

dξt

ξt
= −rtdt − �′

Y ,tdZP
t − T r

(
�′

V ,tdWP
t

)
, (8)

12 The state V21,t is a “quasi-factor” in that it has its own shocks but its parameters are common
with the diagonal elements of Vt in a way that ensures Vt is a well-defined covariance matrix. It is
easiest to understand the dynamics of Vt in (3) when ��′ = kQ′ Q and k is an integer. In that case,
assuming Vt of dimension m× m, the Vt process can be represented as a sum of k outer products of
m-dimensional Ornstein–Uhlenbeck (OU) processes with restricted drifts. In this way, the number
of parameters that Vt involves is not greater than the number of parameters of the underlying OU
process plus one parameter for k. See Gourieroux (2006) and the Internet Appendix for details.
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where T r(·) denotes the trace operator, with the market prices of risk given as

�Y ,t = �−1
Y (Vt)

(
λ0

Y + λ1
Y Yt

)
(9)

�V ,t =
(√

Vt

)−1
�0

V +
√

Vt�
1
V . (10)

This specification allows shocks to both yield and volatility factors to be priced,
and it preserves the affine structure of the model. Therefore, we can study
not only yield term premia but also variance risk premia. Equation (9) follows
Duffee’s (2002) essentially affine market price of risk. Equation (10) is analo-
gous to the market price of risk proposed by Cheridito, Filipović, and Kimmel
(2007, CFK) in that it allows both the constant and the mean-reversion term
in the drift of volatility factors Vt to change with the change of measure. While
CFK apply such market price of risk to a vector of square-root processes with
independent shocks and use it to model the term premium in yields, ours is an
extension of this idea to the covariance matrix case, and we apply it to model
the risk compensation for facing variance shocks.13

Prices of nominal bonds are obtained by solving P(t, τ ) = EQ
t (e− ∫ τ

0 rsds), where
Q denotes the risk-neutral distribution. Yields, yτ

t = − 1
τ

ln Pτ
t , have an affine

form:

yτ
t = −1

τ
{A(τ ) + B(τ )′Yt + T r[C(τ )Vt]}. (11)

The coefficients A(τ ), B(τ ), and C(τ ) solve a system of ordinary differential
equations. The solution for B(τ ) is similar to Gaussian models while C(τ ) solves
a matrix Riccati equation.

The above model implies that the instantaneous expected excess return to
holding a bond with maturity τ , brpτ

t = Et(
dPτ

t
Pτ

t
) − rt, is

brpτ
t = (

λ0
Y + λ1

Y Yt
)′

B(τ )︸ ︷︷ ︸
brpτ

t |dWP
t

+ 2T r
[(

�0
V + Vt�

1
V

)
QC(τ )

]︸ ︷︷ ︸
brpτ

t |dZP
t

. (12)

The notation brpτ
t |dWP

t (brpτ
t |dZP

t ) is shorthand for the instantaneous expected
excess bond return conditional on a dWP

t (dZP
t ) shock. Thus, the first term on

the right-hand side in (12) denotes the instantaneous expected excess return
for facing shocks to yield curve states, dZP

t , and is common in Gaussian term
structure models. The second term is the instantaneous expected excess re-
turn for facing shocks to volatility states, dWP

t , and is a consequence of priced

13 To ensure that (10) does not admit arbitrage opportunities, we impose �0
V = vQ′, for scalar v

such that k − 2v ≥ m+ 1, which guarantees boundary nonattainment for Vt under the risk-neutral
measure, Q (see Mayerhofer (2014) for details). This is analogous to the condition that CFK provide
for Am(n) affine models, in which volatility dynamics are driven by a vector of square-root processes
with independent shocks. CFK show that boundary nonattainment is required to exclude arbitrage
opportunities in such a setting.
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volatility risk in our model. Thus, the volatility states are allowed to affect both
the levels of yields in equation (11) and bond risk premia in equation (12).

The instantaneous yield covariation is driven only by the Vt states

v
τi ,τ j
t := 1

dt

〈
dyτi

t , dyτ j
t

〉
= 1

τiτ j

{
T r{[BX(τi)BX(τ j)′ + 4C(τi)Q′QC(τ j)]Vt} + Bf (τi)Bf (τ j)σ 2

f

}
, (13)

where we define B(τ ) = (BX(τ )′, Bf (τ ))′ for coefficients associated with Xt and
ft. The conditional risk-neutral expectation of the annualized yield variance
over horizon h (measured as fraction of a year) is

v
Q,τ
t,t+h = 1

h
EQ

t

∫ h

0
vτ

t+sds, (14)

which, similar to (13), is an affine function of Vt and is available in closed
form. Analogously, v

P,τ
t,t+h is the expected h-period variance under the physical

dynamics. The variance risk premium, defined as the difference between the
expected h-period variance under the physical and risk-neutral measure, is

vrpτ
t,t+h = v

Q,τ
t,t+h − v

P,τ
t,t+h, (15)

and is determined by the volatility states Vt and the corresponding market
price of risk parameters in equation (10).

B. Discussion

The fact that Vt appears in expression (11) distinguishes our model from the
USV settings, which impose explicit restrictions so that volatility factors do
not affect the cross-section of yields. Such a separation usually improves the
volatility fit of low-dimensional ATSMs (Collin-Dufresne, Goldstein, and Jones
(2009)). However, as highlighted by Joslin (2014), there are few reasons except
statistical ones for this constraint to strictly hold in the data. We leave it to the
data to decide how sensitive the cross-section of yields is to volatility.

Our approach to modeling yield volatilities also differs from Buraschi, Cies-
lak, and Trojani (2010, BCT). BCT also use process (3) but they assume that
it drives the yield curve factors. Since this leads to yield volatilities and levels
being different linear combinations of the same state variables, their model
shares some of the problems typical of the low-dimensional ATSMs. In con-
trast, we use process (3) to describe the covariance matrix of shocks to the
yield curve factors. This specification is crucial for the empirical fit and thus
for our interpretation of yield volatility components in that it combines the
convenience for second moments with the flexibility that Gaussian dynamics
have for describing the term premia.

One could consider extending the baseline specifications in (4) and (5) in
at least two ways. First, we could allow shocks to all yield curve states in
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Yt to be linked by a stochastic covariance matrix, in which case Vt would be
of dimension 3 × 3, with three volatility states and three covariance states.
Second, we could estimate a model that maintains the current 2 × 2 structure
of Vt but allows Vt to affect the conditional volatility of ft. The analysis of
the cross-sectional and dynamic fit, provided in Section III, indicates that our
current volatility specification has sufficient flexibility to capture the important
features of the conditional second moments of yields. Thus, estimation of a
larger and likely overparameterized 3 × 3 model for the volatility dynamics
does not seem warranted by the data. We consider the second extension in the
Internet Appendix and find that it does not result in a better fit to volatilities
relative to our baseline case.

C. Estimation Approach

We estimate the model on a weekly frequency (�t = 1
52 ) combining pseudo-

maximum likelihood with filtering. Details of the estimation approach, identifi-
cation, as well as parameter estimates are presented in the Internet Appendix.

We introduce four types of measurements: zero-coupon yields (ỹτ
t ), condi-

tional expectations of one-year-ahead yields from surveys (Ẽs
t (yτ

t+hs
), hs = 1),

quadratic co-variation of yields (ṽτi ,τ j
t ), and the expected risk-neutral variance

of yields over the next month (ṽQ,τ
t,t+hv

, hv = 1
12 ). Notation with a tilde distin-

guishes measurements used in estimation from the model-implied quantities.
Measurements are observed with errors, which we assume to be mutually in-
dependent and serially uncorrelated.

In estimation, we use six yields with maturities of six months and two, three,
five, seven, and 10 years. To facilitate estimation of the yield dynamics under
the physical measure, we include survey expectations of interest rates from the
Blue Chip Financial Forecasts (BCFF). Specifically, we use the one-year-ahead
median forecast of the six-month and the two-year yield.14 Interpretation of
interest rate volatility, which we pursue below, depends in part on how reliably
we are able to identify the term premia and short-rate expectations components
of the yield curve. Kim and Orphanides (2012) show in a Gaussian setting that
inclusion of survey expectations of interest rates significantly increases the
precision relative to a yields-only estimation.

In terms of second-moment measurements, ṽ
τi ,τ j
t is obtained from the high-

frequency zero-coupon yield curve using the realized covariance estimator (1).
The expected risk-neutral variance ṽ

Q,τ
t,t+hv

is the squared one-month-ahead
implied volatility series.15 We include four realized variance measurements,

14 Panelists in the BCFF survey provide forecasts of constant-maturity Treasury yields, which
are par coupon yields. We convert them to a zero-coupon basis. The Internet Appendix provides
details on the BCFF survey.

15 Since options used to obtain implied variances have futures on a hypothetical coupon bond
as underlying, we use the average duration of the bond during our sample period to approximate
the zero-coupon implied volatility. The implied volatility measurements are matched with the risk-
neutral volatility from the model, v

Q,τ
t,t+hs

, with τ = 1.9, 4.4, and 7.5 years. These numbers represent
the average duration of the coupon bond underlying the interest rate futures in our sample.
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namely, variances of the two-, five-, and 10-year yield and the covariance be-
tween the five- and 10-year yield, as well as three measurements for the implied
variance with underlying bond maturities of two, five, and 10 years. Since the
implied variance series for the two-year maturity are available from March
2006, in estimation we treat the initial observations as missing. In total, we
have seven measurements to pin down the physical and risk-neutral parame-
ters of Vt.

Yields as well as implied and realized variances are measured on the last
business day of a week. Interest rate surveys are compiled every month during
the final week of the month and are published on the first day of the subsequent
month. Thus, we line up surveys with other measurements as of the last week
of a month, and treat the remaining observations as missing values.

To address the non-Gaussianity in factor dynamics, we use the square-root
unscented Kalman filter (UKF) proposed by Julier and Uhlmann (1997). We
maximize the likelihood with differential evolution, which is a global opti-
mization algorithm (Price, Storn, and Lampinen (2005)). After imposing the
econometric identification restrictions the model has 29 parameters, of which
19 are associated with the yield curve factors Yt and 10 are associated with the
volatility factors Vt.16

III. Empirical Performance of the Model

As a prerequisite for an interpretation of yield volatility, this section studies
the model’s empirical performance in terms of the cross-sectional and dynamic
fit. The results can be summarized as follows: First, the model captures the
persistent variation of yield variances by filtering out the jagged high-frequency
dynamics of the realized second moments. Second, we observe no apparent
tension in matching yield variances at different maturities, or in matching
the physical and risk-neutral volatility dynamics. Third, the ability to fit the
conditional second moments does not come at the cost of a poor fit to the
cross section of yields or to the conditional expectations from surveys. In terms
of bond risk premia, the model has flexibility similar to that in a Gaussian
setting.

A. Fit to the Conditional Second Moments of Yields

A.1. Cross-Sectional Fit

The cross-sectional fit of the model is summarized in Table II and
Figure 2. In Figure 2, we superimpose the realized and implied variances and
the realized covariances with their model-based counterparts. The realized
second moments have distinct high-frequency dynamics, which in the graph

16 Following prior literature (e.g., Duffee (2002), Joslin, Le, and Singleton (2013)), we restrict
three insignificant parameters in the mean-reversion matrix of the Yt dynamics to zero. We find
these restrictions to be essentially inconsequential for the dynamics of short-rate expectations and
term premia and their respective volatilities. Details are discussed in the Internet Appendix.
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Table II
Fit of the Baseline Model to the Second Moments of Yields

Panel A summarizes the cross-sectional fit to realized variances, realized covariances, and implied
variances by the baseline model. Rows (1) and (2) report the RMSEs for realized variances (×104)
and realized volatilities (in basis points). For the few data points where covariances become neg-
ative (seven observations in total across all measurements), to compute the RMSE in row (2) we
take the square root of the absolute value of the measurement. Rows (3) though (5) are based on re-
gression (16). Row (3) reports the p-values testing the null hypothesis that the regression intercept
is zero α0 = 0; row (4) shows p-values for the Wald test of the null that all regression coefficients
are zero (α0, α′

1)′ = 0. ∗ indicates rejection of the null at the 5% level. The Wald test does not use
any adjustment of the parameter covariance matrix. Row (5) provides the adjusted R̄2. Panel B
reports regressions of the model-implied variance forecast errors specified in equation (17). The
forecast errors are computed for horizons h of one, four, and eight weeks ahead. Row (1) reports
p-values testing the null that the regression intercept is zero β0 = 0; row (2) shows p-values for
the Wald test of the null that all regression coefficients are zero (β0, β ′

1)′ = 0. ∗ indicates rejection
of the null at the 5% level. The Wald test is based on Newey–West adjustment with h − 1 lags. Row
(3) reports the adjusted R̄2.

Panel A. Cross-Sectional Fit

Realized Implied
Realized Variance Covariance Variance

2Y 3Y 5Y 7Y 10Y 2,5Y 2,10Y 5,10Y 5Y 10Y

(1) RMSE Var
×104

0.74 0.92 0.74 0.58 0.61 0.67 0.44 0.43 0.29 0.22

(2) RMSE Vol
(bps)

24.96 26.49 22.74 20.70 20.99 25.56 20.60 18.58 10.61 9.47

(3) p-value
(α0 = 0)

0.61 0.29 0.94 0.93 0.39 0.08 0.29 0.00∗ 0.06 0.08

(4) p-value
(α0, α′

1)′ = 0
0.36 0.21 0.44 0.42 0.49 0.01∗ 0.09 0.02∗ 0.00∗ 0.01∗

(5) R̄2 0.02 0.00 0.01 0.01 0.03 0.07 0.18 0.06 0.14 0.06

Panel B. Dynamic Fit

Realized Variance Realized Covariance

2Y 3Y 5Y 7Y 10Y 2,5Y 2,10Y 5,10Y

h = 1 week
(1) p-value β0 = 0 0.93 0.31 0.99 0.87 0.61 0.28 0.36 0.00∗
(2) p-value (β0, β ′

1)′ = 0 0.05∗ 0.06 0.01∗ 0.01∗ 0.00∗ 0.13 0.00∗ 0.03∗
(3) R̄2 0.03 0.03 0.03 0.02 0.02 0.07 0.15 0.07
h = 4 weeks
(1) p-value β0 = 0 0.99 0.45 0.77 0.42 0.75 0.44 0.51 0.01∗
(2) p-value (β0, β ′

1)′ = 0 0.67 0.74 0.71 0.96 0.27 0.99 0.46 0.65
(3) R̄2 0.07 0.07 0.05 0.04 0.03 0.11 0.18 0.10
h = 8 weeks
(1) p-value β0 = 0 0.78 0.47 0.70 0.28 0.36 0.75 0.82 0.05∗
(2) p-value (β0, β ′

1)′ = 0 0.85 0.81 0.97 0.81 0.22 0.80 0.53 0.73
(3) R̄2 0.08 0.07 0.06 0.05 0.05 0.11 0.18 0.11
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Figure 2. Fit of the baseline model to the realized and implied second moments of
yields. The figure presents the fit to the realized yield variances, realized covariances, and implied
variances for maturities of two, five, and 10 years obtained from the baseline model. The solid line
is the fitted value, while the dashed line corresponds to the data. The data for the implied variance
at the two-year maturity start in 2006; before this date, they are treated as missing observations
in estimation.

reveals itself through large and short-lived spikes. The yield variance vτ
t fil-

tered by the model is smoother than the realized variance in the data. This
is because the model focuses on the ex-ante expectations of volatility and the
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isolated large positive outliers typical of the realized variance should not be
predictable a priori (e.g., Andersen, Bollerslev, and Meddahi (2005)).

In Panel A of Table II (rows 1 and 2), we report the root mean squared errors
(RMSEs) for different volatility measurements. The RMSEs for the implied
volatilities are about 10 basis points; those for realized volatilities are about 10
basis points higher as the realized volatility is significantly more noisy. These
results suggest that the model is able to filter through the measurement error
and other features of the data (e.g., jumps) that are absent in our specification.

To evaluate the cross-sectional performance more formally, we regress the
fitting errors on lagged information,

Mt − M̂mod
t = α0 +

3∑
i=1

α
yld
1,i PCyld

i,t−�t +
3∑

i=1

αvar
1,i PCvar

i,t−�t + εt, (16)

where Mt is a second-moment measurement observed at time t, M̂mod
t is its

model-implied counterpart, and PCyld
i,t−�t and PCvar

i,t−�t are the principal com-
ponents (PCs) of yields and variances, respectively, where in constructing the
latter we include both the realized and the implied second moments. Time is
measured in weeks, that is, t − �t denotes information lagged by one week.

In Panel A of Table II (rows 3 and 4), we report p-values from the Wald test
of the null hypotheses that the intercept is zero, α0 = 0, and that all regression
coefficients are zero, (α0, α

′
1)′ = 0. Under the null, the residual in the regression

is serially uncorrelated and thus we use simple unadjusted standard errors.
This approach is conservative in that it makes it more likely for the test to re-
ject, and to suggest model misspecification. For most volatility measurements,
we cannot reject either of the nulls as p-values exceed the 5% level. The last
row of Panel A gives the adjusted R2s (R̄2s) from the regressions. The R̄2s are
low (below 3%) for the realized variances and slightly higher for the realized co-
variances and the implied variances. The highest R2 of 18% is obtained for the
realized covariance between the two- and 10-year yields, even though, based
on Figure 2, its fit is not much worse than for other volatility measurements.

Regression (16) helps assess whether there are aspects of yield volatility
dynamics that our model systematically misses. Such a test puts a relatively
high bar on the model. First, the three volatility states that we obtain from
a fully specified term structure model are different from the PCs used in (16)
that summarize purely cross-sectional information in volatilities. Second, the
model does not admit a conditional dependence of yield volatility on the level of
yields,17 and thus the presence of lagged PCs of yields, PCyld, in (16) is outside
the model’s scope. Since we lack a frame of reference to evaluate such regres-
sions in the context of interest rate volatility, we discuss two benchmarks for
their interpretation. First, we note that regressions analogous to (16) on yield
fitting errors in a standard three-factor Gaussian model also reject the null (at

17 This feature is not particular to our model, and arises due to admissibility constraints in the
general class of affine models with stochastic volatility.
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least for some maturities) and can have R2 above 10%.18 By this comparison,
the cross-sectional fit of our model to yield volatility is comparable to the fit to
yield levels that is common in the literature. Second, in Section VI.C we report
estimates of regression (16) for the volatility fitting errors implied by the A2(4)
model, and find that the null hypothesis is more frequently rejected than in
our baseline setting.

A.2. Dynamic Fit

We also study the properties of volatility forecast errors. We define the fore-
cast error as Mt+h�t − Emod

t (Mt+h�t), where Mt+h�t is the realized variance
or covariance observed at time t + h�t and Emod

t (Mt+h�t) is the corresponding
model-based expectation of the variance or covariance h periods ahead. We
estimate the following regressions:

Mt+h�t − Emod
t (Mt+h�t) = β0 +

3∑
i=1

β
yld
1,i PCyld

i,t +
3∑

i=1

βvar
1,i PCvar

i,t + εt+h�t. (17)

Under the null hypothesis that the model is correctly specified, the regression
coefficients are zero but the residual is autocorrelated due to overlapping ob-
servations. Therefore, we use Newey–West standard errors with h − 1 lags. We
report the p-values for the Wald test of the restriction that the intercept is
zero, β0 = 0, and that all regression coefficients are jointly zero, (β0, β

′
1)′ = 0.

Panel B of Table II reports the results for three forecast horizons (h = 1, 4 and
8 weeks), and for realized variances and covariances. The test does not reject
the zero intercept restriction except in one case. The rejection of the joint zero
restriction on all coefficients occurs for several measurements at the shortest
horizon of one week, but not at longer horizons.

B. Fit to the First Moments of Yields

We verify that the ability of the model to match the second moments is not
traded off against the fit to the first moments of yields. Our estimation imposes
the requirement that the model matches not only yields but also physical expec-
tations of interest rates from surveys. Table III, Panel A shows that the RMSEs
are about five basis points on average for yields across maturities, and 18 basis
points for survey expectations. We provide analogous RMSEs for a three-factor
Gaussian model that we estimate on the same yield and survey measurements
as our baseline model. The fit from the two models is comparable.

Next, we study whether our model gives rise to empirically plausible expected
returns and term premia. We compare the model’s implications to three alter-
native risk premium proxies from the literature: (i) the Cochrane and Piazzesi

18 While the RMSEs of yields are about five basis points on average across maturities, when
we regress yield fitting errors on lagged PCs as in (16), the null hypothesis that all coefficients
are zero is rejected at several maturities, and the R2 from the regression can exceed 10%. These
regressions can be found in the Internet Appendix.
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Table III
Fit of the Baseline Model to the First Moments of Yields

Panel A provides the RMSEs in basis points for the fit to yields and to survey expectations of yields.
Row (1) is based on our baseline model; row (2) is based on a three-factor Gaussian model estimated
with the same yield and survey data as the baseline. Panel B reports regressions of the model-
implied expected returns on alternative risk premium proxies: the Cochrane-Piazzesi (CP) factor,
the Federal Reserve Board (FRB) term premium, and the survey-based one-year expected excess
return for the two-year bond (BCFF2Y). In the column “CP,” the LHS variable is the average (across
maturities) model-implied expected excess return; LHS and RHS variables are standardized and
therefore the intercept is not reported. In the column “FRB,” we regress the average instantaneous
term premium in our model on the corresponding average instantaneous FRB term premium,
where averages are taken across maturities from two to 10 years. In the column “BCFF 2Y” we
use the instantaneous bond risk premium on the LHS; LHS and RHS are expressed in annual
returns units, for example, an intercept of 0.002 equals 20 basis points. The data span the period
1992:01 to 2010:12. Due to availability of surveys, all series in Panel B are sampled at the monthly
frequency. We use the last week of the month to convert weekly model-implied quantities to the
monthly frequency. t-statistics in parentheses are Newey–West adjusted with 18 lags.

Panel A. Cross-Sectional Fit

Survey
Yields Expectations

RMSE (bps) 6M 2Y 3Y 5Y 7Y 10Y Es
t (y(6M)

t+1Y ) Es
t (y(2Y )

t+1Y )

(1) Our baseline 5.33 6.78 6.04 4.71 3.27 5.30 18.10 18.37
(2) 3f Gaussian 7.35 6.46 4.85 4.25 3.12 4.36 21.72 24.34

Panel B. Comparison of Risk Premia from the Baseline Model with Alternative Proxies

Regressor: CP FRB BCFF2Y

β0 – −0.004 0.002
– (−10.03) (2.83)

β1 0.72 1.07 1.02
(6.37) (26.01) (9.19)

R̄2 0.52 0.95 0.66

(2005, CP) factor, (ii) the term premium published by the Federal Reserve Board
(FRB), and (iii) the survey-based risk premium. The CP factor is obtained fol-
lowing Cochrane and Piazzesi (2006). The FRB premium is obtained from the
FRB’s website and is based on a three-factor Gaussian model estimated using
yields and survey expectations of interest rates as measurements. It therefore
serves as a check on whether we are able to replicate the success of Gaussian
models in generating economically meaningful risk premia. The survey-based
premium is obtained directly from the BCFF survey of the one year yield one
-year ahead; this survey forecast is not used in the estimation of our model.
For consistency across the different proxies, we sample the data at the month’s
end.19

19 The CP factor is estimated over the 1971 to 2011 period using the Gürkaynak, Sack, and
Wright (2006) zero-coupon yields, which Cochrane and Piazzesi (2008) use. The FRB term premia
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Table III, Panel B, presents regressions of the model-implied premia on the
three measures. A regression on the survey-based premium generates a highly
significant slope coefficient of 1.02 and an R2 of 66%. Similarly, the CP factor
explains more than 50% of the risk premium variation in the model. With
a slope coefficient of 1.07 and an R2 reaching 95%, the closest alignment is
between the term premium in our model and the FRB term premium. This
is despite the fact that our model admits a richer form of market prices of
risk (equation (12)) than the purely Gaussian model that underlies the FRB
premium. We discuss the economic interpretation of this finding in Section V.

IV. Decomposing Conditional Yield Volatility

Yield volatility stems from either volatile short-rate expectations or volatile
term premia and the comovement between the two (plus a convexity term).
In this section, we use our model to analyze the properties of these compo-
nents. We then study the effect that stochastic volatility has on the conditional
distribution of interest rates. We also characterize the conditional correlation
between shocks to term premia and shocks to short-rate expectations.

A. Volatility of Term Premia versus Volatility of Short-Rate Expectations

A yield with maturity τ can be decomposed as

yτ
t = yE,τ

t + yT P,τ
t + yC,τ

t , (18)

where

yE,τ
t = 1

τ
EP

t

(∫ τ

0
rt+s

)
ds (19)

yT P,τ
t = 1

τ

[
EQ

t

(∫ τ

0
rt+s

)
ds − EP

t

(∫ τ

0
rt+s

)
ds

]
(20)

yC,τ
t = −1

τ

[
ln EQ

t

(
exp

(
−

∫ τ

0
rt+sds

))
+ EQ

t

(∫ τ

0
rt+sds

)]
, (21)

yE,τ
t is the expected average short rate over the life of a τ -period bond, yT P,τ

t
is the term premium, and yC,τ

t is the convexity. We focus on the conditional
second moments of the first two terms, which constitute the main portion of

are based on the model of Kim and Wright (2005). Compared to our estimation, Kim and Wright
(2005) use different maturities and horizons of interest rate surveys. For the survey-based proxy,
we compute Es

t (rx(2)
t+1Y ) = f (2)

t − Es
t (y(1)

t+1Y ), where f (2)
t is a one-year-forward rate locked in today

for a loan starting in a year, and Es
t (y(1)

t+1Y ) is the one-year-ahead expectation (median forecast)
of the one-year zero-coupon yield backed out from the BCFF survey. Note that we do not use the
Es

t (y(1)
t+1Y ) survey forecast in the estimation of our model.
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Figure 3. Average conditional volatilities of short-rate expectations and the term pre-
mium. The figure displays the term structure of sample average conditional volatilities (thick line)
of expected short rates and of term premia. The asymptotic 95% confidence intervals are obtained
using the delta method (dashed lines).

the total conditional yield volatility. Specifically, we compute the corresponding
instantaneous variances and the covariance according to

vE,τ
t = 1

dt

〈
dyE,τ

t

〉
, vT P,τ

t = 1
dt

〈
dyT P,τ

t

〉
, vE,T P,τ

t = 1
dt

〈
dyE,τ

t , dyT P,τ
t

〉
. (22)

Next, using the orthogonality between dZP
t and dWP

t , the total instantaneous
yield variance can be written as

vτ
t = vE,τ

t + vT P,τ
t + 2vE,T P,τ

t + vC,τ
t , (23)

where the last term is the volatility-of-volatility, or “vol-of-vol,” effect. Expres-
sion (23) is a different way to view the instantaneous yield variance in (13).
Each element in (23) is affine in Vt, and thus has a tractable form (provided
in the Internet Appendix). In Panel A of Table IV, we compute the average
contribution of each term to the total variance. The first three terms account
for essentially all of the yield variance across maturities. In the discussion
that follows, we convert variances into volatilities expressed in basis points per
annum.

A.1. Behavior of Volatility Components Across Maturities

Using the decomposition (22), Figure 3 traces out the sample averages of
the instantaneous volatilities of short-rate expectations and of term premia
across maturities. The dashed lines are the asymptotic 95% confidence inter-
vals. Short-rate expectations volatility peaks at a maturity between two and
three years and declines at longer maturities. In contrast, the average term
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premium volatility increases with maturity. Other sample properties are sum-
marized in Panel B of Table IV.

The cross-sectional behavior of average volatilities is economically meaning-
ful. The hump in volatility of short-rate expectations confirms the view shared
by practitioners and policy makers that the two- to three-year maturity seg-
ment is highly sensitive to market expectations about the future short rate and,
by extension, about the path of monetary policy (e.g., Stein (2013)). An increas-
ing premium volatility as a function of maturity instead supports the intuition
that longer-maturity yields are more informative about the term premia than
the short end of the yield curve.

The above conclusions are useful to the extent that they are not overwhelmed
by the uncertainty surrounding model estimates. Such uncertainty can be large
in term structure applications, especially when it comes to parameters gov-
erning the physical dynamics of interest rates estimated with short samples.
Consistent with Kim and Orphanides (2012), however, we find that inclusion of
interest rate survey forecasts significantly increases the precision with which
we can separate risk premia from short-rate expectations, and therefore their
corresponding volatilities.

A.2. Dynamic Features of the Volatility Components

The left-hand panels of Figure 4 present the time series of
√

v
T P,τ
t and

√
v

E,τ
t

obtained using equation (22) for maturities of two, five, and 10 years. The
right-hand panels plot an analogous decomposition of the level of interest rates
into term premium and average expected short rate using equations (19) and
(20). The graph visually highlights the point that at shorter maturities the
conditional volatility is dominated by the short-rate expectations component,
while at long maturities it is dominated by the term premium component, even
though the volatility of short-rate expectations is still quantitatively impor-
tant at the long end of the yield curve. The volatility of term premia is more
persistent than the volatility of short-rate expectations, with their respective
sample half-lives equal to 21 and 8 weeks on average for maturities between
two and 10 years. Term premia and short-rate volatility components comove
relatively weakly with each other, with a sample correlation not exceeding 0.25
at any given maturity, but each features strong comovement across maturi-
ties. Such behavior of volatilities is consistent with the decomposition of yield
levels, where the right-hand panels of Figure 4 illustrate that term premia and
short-rate expectations each move on one dominant factor across maturities.20

20 It is useful to compare this decomposition to the one based on the PCs. It is well known that
the first PC (the level factor) explains more than 98% of the variation in yields across maturities.
In terms of economic drivers, however, the first PC combines both term premia and short-rate
expectations, which need not be highly correlated (based on our model, the correlation between the
two terms is about 0.5 in levels and 0.2 in monthly changes on average across maturities). Similar
intuition pertains to yield volatilities: while the first PC extracted from realized and implied
volatilities explains about 80% of their variation (Section I.D), our decomposition shows that it is
a combination of economically different volatility components.
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Figure 4. Time series of term premia, short-rate expectations, and their conditional
volatilities. The top panels show the time series of short-rate expectations volatility (Panel A)
and the average expected short rate (Panel B). The bottom panels present analogous dynamics for
the volatility of term premium (Panel C) and the level of the term premium (Panel D). All plots
report maturities of two, five, and 10 years.

It is informative to study the behavior of conditional volatilities over the busi-
ness cycle. Figure 5 juxtaposes the volatility of short-rate expectations at the
two-year maturity with the volatility of term premia at the 10-year maturity
(we present results for the maturities at which the contribution of the respec-
tive terms is the largest). The upper panel covers our entire sample period; the
bottom panel zooms in on the events during and after the 2007/09 financial
crisis. Compared to term-premium volatility, the volatility of short-rate ex-
pectations rises more abruptly when the economy enters into a recession and
during distress in financial markets, as visible during the LTCM and the dot-
com crises, and most clearly in the early stages of the 2007/09 financial crisis.
These periods typically coincide with monetary easing by the Fed. Specifically,
during easing episodes the volatility of short-rate expectations is about 50 ba-
sis points higher at the two-year maturity and 25 basis points higher at the
10-year maturity compared to other weeks in our sample.21 The corresponding

21 We define an easing (tightening) episode as the period during which the Fed lowered (in-
creased) the Fed funds target in a sequence of at least three consecutive moves. Out of 999 weeks
in our sample, we classify 202 weeks as tightenings and 270 weeks as easings.
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Figure 5. Yield volatility and selected events. The figure plots the model-implied volatility of
short-rate expectations at the two-year maturity and the volatility of term premia at the 10-year
maturity. Shaded areas are the NBER-dated recessions. Vertical lines mark selected economic
or financial events. The upper plot spans the entire sample period; the bottom plot looks at the
subperiod of the financial crisis from June 2007 through the end of our sample in December 2010.
The thin lines in the bottom panel denote the 95% confidence interval.

increase in term premium volatility during easings is less than four basis points
at the two-year maturity and nine basis points at the 10-year maturity.

A.3. Yield Volatility during the 2007/09 Financial Crisis

The 2007/09 financial crisis illustrates the distinct behavior of interest rate
volatility along the term premium and short-rate expectations dimensions.
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Figure 6. Term structures of conditional yield volatilities. Panel A presents the volatility
of short-rate expectations across maturities on three selected dates. Panel B reports analogous
results for the volatility of term premia.

The bottom panel of Figure 5 focuses on the subperiod between June 2007 and
December 2010 and superimposes volatility dynamics with a number of events
during that interval.

The volatility of short-rate expectations increases in the summer of 2007
when the first problems in the subprime market emerge, reaching a peak at
the time of the Lehman collapse and AIG bailout. It is visibly reduced after
the Fed implemented the zero lower bound (ZLB) policy in December 2008,
communicating its intension to keep the federal funds rate low for “some time.”
The volatility of term premia shows a different pattern, remaining low until
the fall of 2008. The AIG bailout marks the point when the premium volatility
begins a persistent rise. The consistently high levels of premium volatility
starting from late 2008 line up with the QE measures undertaken by the Fed
(see, e.g., Fawley and Neely (2013) for the dating of those events). For instance,
the Fed’s announcement to extend its Large Scale Asset Purchases (LSAP)
program to long-term Treasuries on March 18, 2009 coincides with the week
in our sample in which the premium volatility reaches the highest level on
record. It remains elevated though August 2009, when the FOMC announced a
planned slowdown in LSAP. After this point, which was followed by additional
announcements pointing to a slowdown in LSAP, the premium volatility begins
a several-month-long decline until mid-2010, when the Fed announced a new
set of liquidity measures.

To highlight how the shape of the entire term structure of conditional volatil-
ity can change over time, we study its dynamics on three dates: September 19,
2008, the week that Lehman Brothers filed for bankruptcy; October 31, 2008,
the week after the Fed and the Treasury Department introduced measures to
support liquidity in financial markets; and December 30, 2010, the end of our
sample, at which point the second round of QE was already in place. Figure 6
presents the point estimates of conditional volatilities on each of these days as
a function of maturity. The figure shows how a progressively lower volatility of
short-rate expectations on these dates is accompanied by a successive rise in
the volatility of term premia across maturities.
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While most of the literature focuses on the effects of Fed policies on the level
of yields, our results suggest that they have had a significant impact on yield
volatilities as well. Our evidence is consistent with the view that the Fed has
been successful in reducing the volatility of market expectations about the path
of the short rate, and that the QE measures have worked mostly through their
influence on the risk premia (e.g., Bernanke (2013)).

B. Effects of Volatility on the Conditional Distribution of Interest Rates

The above results point to a nontrivial effect of stochastic volatility on the
conditional distribution of interest rates. Using the same dates as in the previ-
ous section, Figure 7 presents the model-implied conditional distribution of the
five-year yield one month ahead (Panel A), the corresponding term premium
and expectations components (Panels C and D), and their respective volatili-
ties (Panels E and F). For comparison, Panel B displays the yield distribution
assuming that the conditional volatility is constant (we fix the conditional co-
variance matrix, Vt, at its sample average). Each plot is constructed by Monte
Carlo simulations with 10,000 replications.

Panel A indicates that the conditional distribution of interest rates has un-
dergone dramatic changes, not only in conditional means but also in the un-
certainty surrounding them. The model implies that the distribution of the
five-year yield moved from being widely spread around 3.1% in the week of
the Lehman collapse to being tightly centered around 2.1% at the end of 2010.
Exploring the sources of this shift, Panels C and D suggest that they stemmed
mainly from changing short-rate expectations whose volatility shrank notice-
ably during the final two years of our sample. In contrast, over the same time
span, the distribution of the term premium has widened but not sufficiently
so to supersede the effect that the decline in short-rate expectations volatility
had on the overall conditional distribution of yields. Panels E and F emphasize
these dynamics by looking at the conditional distribution of volatilities. Specif-
ically, Panel F makes clear that from the time of the Lehman collapse through
the end of 2010 the volatility of short-rate expectations declined significantly,
and at the end of our sample it was expected to stay at historically low levels.
Comparing these results with Panel B of Figure 7, it is clear that, due to the
constant volatility assumption, a Gaussian model would have missed these
aspects of interest rate dynamics.

C. Comovement between Shocks to Term Premia and Short-Rate Expectations

By modeling directly the stochastic covariance of risks in the yield curve,
our setting is suited to analyze the question of how shocks to short-rate ex-
pectations and shocks to term premia in Treasury yields co-vary over time.
Such correlation is interesting not only from an asset pricing but also from a
monetary policy perspective. For example, a negative conditional correlation
could suggest that the Fed faces a trade-off between easing monetary policy, for
instance, to stimulate the economy, and increasing the inflation risk premium.
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Figure 7. Conditional distribution of the five-year yield and its volatility at a one-
month-ahead horizon. Panels A and C through F are generated from our baseline model, and
describe the one-month-ahead distribution (kernel density) of the five-year yield and of its second
moments at three dates in our sample. Panel A shows the conditional distribution of the five-year
yield, Panels C and D show the conditional distribution of the term premium and the expected
short rate, and Panels E and F show the distribution of the corresponding volatilities. Panel B
displays the conditional distribution of the five-year yield assuming that the volatility is constant
throughout our sample, fixing the Vt matrix at its sample average. Each density is obtained from
10,000 Monte Carlo replications.

The instantaneous correlation between shocks to term premia and shocks to
short-rate expectations is v

E,T P,τ
t /

√
v

E,τ
t ×v

T P,τ
t . Figure 8 plots its time series for

the five-year yield. The correlations at other maturities behave similarly and
are summarized in the Internet Appendix. Two features are worth highlighting.
First, the correlation is on average close to zero (we cannot reject the hypothesis
that the conditional correlation is zero on average). Second, the correlation is
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Figure 8. Correlation between shocks to short-rate expectations and to term premia.
The figure describes the instantaneous correlation between shocks to short-rate expectations and
to term premia for the five-year yield. The solid stepped line superimposes the (rescaled) Federal
funds rate target.

persistent and clearly time-varying; it changes signs multiple times during our
sample and has a sample standard deviation of about 0.4.22

The correlation between shocks to term premia and expected short rates in-
creases during easings and declines during tightenings. Figure 8 superimposes
the correlation with the evolution of the Fed funds target (the unconditional
correlation between the two series in the plot is −0.5). The model suggests
that Greenspan’s conundrum period, that is, the lack of a response of long-
term yields to the Fed’s 2004/06 tightening, was associated with a gradual
decline in the correlation between expected short-rate shocks and term pre-
mium shocks from 0.8 to −0.4. More generally, the low average correlation
between those shocks is related to the observation that in the last two decades
the link between short- and long-term interest rates has been largely severed
(e.g., Thornton (2012)). It also casts light on the conclusion in recent literature
that the Fed is able to influence the expectations of the short rate at long hori-
zons, as suggested by the strong impact of monetary policy shocks on long-term
yields (Nakamura and Steinsson (2013), Hanson and Stein (2015)). Our results

22 To verify these results with a proxy independent of our model, we use an approach motivated
by Hanson and Stein (2014). They argue that changes in the two-year yield are dominated by
short-rate news, whereas changes in long-term yields that are (unconditionally) orthogonal to
changes in the two-year yield should mostly reveal term premia news. Accordingly, we regress
�1dy(10)

t = a + b�1dy(2)
t + ε

(10)⊥
t on the full sample, where �1d denotes a daily change, and compute

the rolling 60-day correlation between �1dy(2)
t and ε

(10)⊥
t . While by construction the unconditional

correlation is zero, the rolling correlation varies significantly over time: it has a standard deviation
of 0.35, and its sample 25th and 75th percentiles are −0.25 and 0.26, respectively, which is broadly
consistent with our model-based results.
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indicate that while unconditionally the correlation between term premia and
expected short rates is low, it can increase dramatically when the Fed is easing.

V. Implications of Yield Volatility for Risk Compensation in the
Treasury Market

The preceding results raise the question of how volatility risk is priced in
Treasury bonds and in fixed income market more broadly.

A. Sharpe Ratios for the Yield and Variance Shocks

Using expression (12), bond risk premia have two components loading on the
yield curve states Yt and the volatility states Vt,

brpτ
t = brpτ

t |dWP
t + brpτ

t |dZP
t , (24)

where the first term on the right-hand side is the compensation for facing the
yield curve shocks (dZP

t ) and the second term is the compensation for facing the
volatility shocks (dWP

t ). Similarly, we decompose the instantaneous variance of
yields in equation (13) into variance induced by dZP

t and dWP
t shocks:

vτ
t = vτ

t |dWP
t + vτ

t |dZP
t . (25)

The variance of the instantaneous bond returns is τ 2vτ
t . The associated bond

market Sharpe ratio, that is, premium earned per unit of risk, for facing both
types of shocks is

SRτ
t = brpτ

t

τ
√

vτ
t
. (26)

We can define Sharpe ratios associated with a specific source of risk as

SRτ,Z
t = brpτ

t |dWP
t

τ
√

vτ
t |dWP

t

(27)

SRτ,W
t = brpτ

t |dZP
t

τ
√

vτ
t |dZP

t

, (28)

where SRτ,Z
t is the compensation per unit of yield curve risk induced by dZP

t

shocks, keeping shocks to yield volatility dWP
t fixed, and vice-versa for SRτ,W

t .
To show the effect of the time-varying second moments, we also construct

SRτ
t = brpτ

t

τ
√

vτ
, (29)

which reflects the variation in the bond risk premium, keeping the instanta-
neous variance constant at its sample average vτ .
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The sample average of the total bond market Sharpe ratio, SRτ
t , is about 0.1

across maturities.23 We find that both SRτ
t and SRτ,Z

t are very highly correlated
with the total bond market Sharpe ratio, SRτ

t . The sample correlation between
SRτ

t and SRτ
t is above 0.95 across maturities, and the sample correlation be-

tween SRτ,Z
t and SRτ

t is effectively one. These results suggest that the variation
in Sharpe ratios for Treasury bonds is dominated by the time-varying market
prices of risk and that investors holding bonds require compensation almost
exclusively for the yield curve shocks. Such interpretation is consistent with
evidence that yields are largely insensitive to volatility shocks (Collin-Dufresne
and Goldstein (2002)). The model implies that a one-standard-deviation shock
to volatility states has an effect of less than five basis points on the 10-year
interest rate, and an even smaller effect at shorter maturities.24 Thus, since
yields are largely insensitive to volatility shocks, those shocks have little effect
on the expected excess bond returns.

These findings are important for understanding how our model circumvents
Duffee’s (2010) critique that high-dimensional settings (with four or five Gaus-
sian factors) imply implausibly high conditional Sharpe ratios as a consequence
of in-sample overfitting. Although our model has six sources of risk, in terms of
pricing shocks to Treasury bonds, it behaves like a low-dimensional Gaussian
model. The additional flexibility provided by the volatility states is used to fit
the second-moment information that we supply in estimation.

The implication that volatility is not directly related to Treasury risk pre-
mia agrees with the evidence that the link between various measures of bond
volatility and expected bond returns is weak (e.g., Le and Singleton (2013)).
However, our model does not imply that the compensation for variance risk is
zero in all fixed income assets. This is revealed by the properties of SRτ,W

t ,
which measures the compensation for volatility risk per unit of this spe-
cific risk, rather than per unit of the overall yield curve risk. Figure 9 de-
picts the time-series dynamics of SRτ,Z

t and SRτ,W
t for the two- and 10-year

bonds.

23 Unconditional annual Sharpe ratios computed using CRSP bond returns over a long sample
(1958 to 2010) are between 0.44 (for maturities between 12 and 24 months) and 0.28 (for maturities
between 60 and 120 months). During our sample period (1992 to 2010), bond risk premia (and
term premia) have been hovering close to zero since mid-2000, as implied by our model and similar
estimates in the literature. This can explain the low average model-implied Sharpe ratios. Our
results parallel those in Kim and Singleton (2012), who report conditional Sharpe ratios below 0.1
for Japanese bonds in the low interest rate environment.

24 Using equation (11), the contribution of the T r(C(τ )Vt) term to model-implied yields is very
small relative to the contribution of the B(τ )′Yt term. At our estimates, the effect of Vt on the
cross-section of yields is comparable to the size of the measurement errors in yields, whose values
are about seven to nine basis points (e.g., Bekaert, Hodrick, and Marshall (1997)). Thus, volatility
states are effectively unspanned by the yield curve. Duffee (2011) argues that measurement error
can break the exact mapping between yields and the state vector even when the theoretical model
assumes spanning. Therefore, although in our model the volatility states are theoretically spanned
by the cross-section of yields, in practice they cannot be recovered from yields given the size of the
measurement error.
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Figure 9. Instantaneous Sharpe ratios. The figure plots the instantaneous annualized Sharpe
ratios from our baseline model for the two- and 10-year bonds. The Sharpe ratios are decomposed
into the compensation for facing yield curve shocks and the compensation for facing variance
shocks, according to expressions (27) and (28). The dashed lines mark the level of the unconditional
annual Sharpe ratios for CRSP bond portfolios with maturities between 12 and 24 months (Panel
A) and maturities between 60 and 120 months (Panel B), and are computed from a long historical
sample (1958 to 2010) over which CRSP data are available.

The time-series behavior of SRτ,W
t shows that the compensation for variance

risk can be large and is strongly time-varying. The sign on SRτ,W
t is generally

negative, implying that investors are willing to pay a premium for protection
against volatility risk. The positive convexity makes Treasury bonds, at least
in theory, potential hedges against such risk. In practice, given that the model-
implied effect of volatility risk on the yield curve is smaller than plausible
measurement error, our model identifies the parameters of the variance risk
premium not from yields but from the realized and implied variances provided
in estimation. The average conditional (annualized) Sharpe ratios for volatility
risk range between −1.7 at the two-year maturity to −0.8 at the 10-year matu-
rity. These numbers suggest that it is costly to buy protection against variance
risk, a result that is similar to existing evidence for the equity market. For in-
stance, Egloff, Leippold, and Wu (2010) show that buying variance protection in
the equity market has historically earned an annualized Sharpe ratio of about
−1.4. Similar results are reported by Dew-Becker et al. (2015), who document
a Sharpe ratio of −1.7 associated with hedging purely transitory shocks to the
realized variance in the equity market.

B. Compensation for the Variance Risk

The model allows us to ask more specific questions about the type of volatility
shocks that investors are willing to pay such a high premium to hedge. Using
the estimated dynamics of the volatility states Vt under the physical and the
risk-neutral measures, we can analyze whether it is shocks to the variance of
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Figure 10. Decomposition of the variance risk premium at different maturities. Panel A
shows the sample average of the ratio between the one-month-ahead variance risk premium and
the expected variance at the same horizon, that is, vrpτ

t,t+1M/v
P,τ
t,t+1M, for different yield maturities τ .

Panel B decomposes the average variance risk premium according to equation (30) into components:
(1) average compensation for the variance of term premia (“TP”), (2) average compensation for the
variance of short-rate expectations (“Er”), (3) average compensation for the covariance between
term premia and short-rate expectations (“Cov”), and (4) average compensation for the vol-of-vol
(“Var”). These components are expressed as fractions of the average variance risk premium. Thus,
each bar in Panel B sums to one. The contribution of the “Var” component is close to zero and
essentially invisible in the plot.

short-rate expectations, to the variance of term premia, or to the covariance
between expectations and premia that induce such compensation.

Figure 10 summarizes the properties of the variance risk premium, defined
in equation (15), as a function of the maturity of the underlying bond. For
ease of interpretation, we follow the convention of presenting the average ratio
of the variance risk premium to the expected variance (e.g., Carr and Wu
(2009)). In Panel A, we report the sample average of vrpτ

t,t+h

EP
t (vτ

t,t+h)
, with h equal to one

month (h = 1/12). This ratio ranges between 10% and 15% across maturities,
is slightly humped at maturities of two to three years, and declines at longer
maturities.

Using equation (23), one can obtain the following decomposition:

vrpτ
t,t+h = vrpE,τ

t,t+h + vrpT P,τ
t,t+h + 2vrpE,T P,τ

t,t+h + vrpC,τ
t,t+h, (30)

where

vrpE,τ
t,t+h = 1

h

∫ h

0

(
EQ

t
(
v

E,τ
t,t+s

) − EP
t

(
v

E,τ
t,t+s

))
ds. (31)

The other terms in equation (30), all of which are an affine function of Vt, are
constructed analogously. The term vrpE,τ

t,t+h is the compensation that investors
require for facing shocks to the variance of short-rate expectations, vrpT P,τ

t,t+h
is the compensation for facing shocks to the variance of the term premium,
vrpE,T P,τ

t,t+h is the compensation for facing shocks to the covariance between ex-
pectations and premia, and vrpC,τ

t,t+h is the compensation for the “vol-of-vol” risk.
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To understand the contribution of these risks, in Figure 10 we plot the frac-
tion that each adds to the total variance risk premium. The fractions are com-
puted as the sample average of each element on the right-hand side of (30) to
the sample average vrpτ

t,t+h, h = 1/12. The numbers in the figure sum to one at
any given maturity. The two largest sources, which jointly account for almost
the entire variance premium, are vrpE,τ

t,t+h and vrpE,T P,τ
t,t+h . The contribution of

vrpE,τ
t,t+h declines with maturity, while that of vrpE,T P,τ

t,t+h increases with maturity.
The model suggests that the compensation for facing shocks to the variance of
the term premium, vrpT P,τ

t,t+h , per se is small, and that the premium for the vol-
of-vol component, vrpC,τ

t,t+h, is effectively zero. Thus, investors pay a premium for
being able to hedge the risks that short-rate expectations become more volatile
and that shocks to short-rate expectations propagate onto the long end of the
yield curve. The latter effect is intuitively captured by shocks to the covariance
between short-rate expectations and premia. To the extent that the volatility
of short-rate expectations can be linked to uncertainty about the future path
of monetary policy, these results suggests that there is significant demand for
protection against this source of uncertainty.

VI. Robustness and Extensions

A. Comment on the ZLB

One caveat concerning the above results is that our model does not impose
the ZLB constraint on the short-term interest rate, despite the Federal funds
rate being effectively at the ZLB for the last two years of our sample. Recent
models that incorporate the ZLB are predominantly Gaussian.25 By construc-
tion, such models generate an asymmetric distribution of the short rate at the
ZLB, but do not account for the tightening of the yield distribution that we
document in Section IV.B. Ideally, one would combine our model with a ZLB
restriction. However, recognizing the challenges associated with an empiri-
cal implementation of such an extension, there are reasons to expect that our
volatility decomposition is not significantly affected by the ZLB. First, although
the ZLB is clearly important for the very short end of the yield curve, interest
rates with maturities of one or more years have remained substantially above
zero though the end of our sample. Swanson and Williams (2014) find that
Treasury yields with one or more years to maturity are as responsive to news
over the 2008 to 2010 period as in the earlier part of the sample. Similarly,
Bauer and Rudebusch (2014) argue that the tightness of the ZLB constraint
increased significantly only after August 2011, when the Fed provided a dated
statement promising to keep interest rates near zero for the next two years.
Prior to that announcement, market participants expected the liftoff from the

25 See Bauer and Rudebusch (2014) for a summary of the recent literature. One exception is
Kim and Singleton (2011), who estimate ZLB models with stochastic volatility on Japanese yields.
Since their focus is on two-factor models, they conclude that more factors are needed to fit yields
and volatilities jointly.
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ZLB to occur within several months. Second, and related, our use of survey
forecasts requires that the model-implied expectations of the short-term inter-
est rate be consistent with those of professional forecasters. This mitigates the
concern that the model may interpret the entire variation in yields in the recent
episode as stemming from the term premium. Our estimates show that, even
at the two-year maturity, short-rate expectations remained relatively volatile,
with conditional volatility around 50 basis points at the end of 2010. These ar-
guments suggest that the volatility decomposition at maturities of two or more
years, which are our main focus, should not be strongly affected by the ZLB in
the period of our study. We leave an extension of our model to incorporate the
ZLB to future work.

B. Relative Contribution of the Model versus Second-Moment Data

Our analysis departs from the existing literature on two dimensions: the
model for conditional second moments of yields and the use of more informa-
tive second-moment data. It is therefore important to disentangle the relative
contributions of these two dimensions to our results. To assess the contribution
of the data, we estimate our baseline model on yields and interest rate surveys
without providing information about second moments. Details on this specifi-
cation are in the Internet Appendix, but here we summarize the main results.
The model-implied conditional variances in this yields-only setting vary little
over time and in a way that is unrelated to the observed volatility dynamics.
That is, there is not enough information in yields themselves to identify the
conditional volatility dynamics. This conclusion is consistent with earlier stud-
ies that rely only on yields to estimate term structure models with stochastic
volatility, finding either little or counterfactual variation in the model-implied
conditional second moments (Collin-Durfesne, Goldstein, and Jones (2009), Ja-
cobs and Karoui (2009)). As such, our use of informative second-moment data
is critical for providing a reliable decomposition of yield volatility.

C. Comparison with the A2(4) Model

It is worth discussing how our approach to modeling second moments in
yields relates to the standard affine framework. Given that ATSMs with a sin-
gle volatility state are known to face a tension in matching volatilities at the
short and the long ends of the yield curve, we estimate an A2(4) model. The
specification we adopt follows Joslin (2010) except that, in analogy to equation
(7), we assume that the short rate is a function of only conditionally Gaus-
sian factors. We estimate the model using the same techniques, yields, and
second-moment measurements as in our baseline case.26 The model has four

26 In practice, we find that not allowing the volatility factors to enter the short rate prevents the
estimation from landing in a local minimum. Estimating a version of the model in which volatility
affects the short rate, we find that, while it generates lower RMSEs for yields, the volatilities
it implies are either uncorrelated or negatively correlated with the second-moment data used in
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factors in total, Ft = (F (1)
t , F (2)

t , F (3)
t , F (4)

t )′, of which the first two factors are
square-root processes and the last two are conditionally Gaussian. The instan-
taneous covariance matrix of Ft is specified as

1
dt

〈dFt〉 = H0 + H(1)
1 F (1)

t + H(2)
1 F (2)

t , (32)

where H0, H(1)
1 , and H(2)

1 are 4 × 4 matrices defined such that they allow for
instantaneous correlations between shocks to conditionally Gaussian factors
while maintaining independence of shocks to the square-root factors. The max-
imally flexible specification of (32) involves an estimation of nine parameters
in matrices H0, H(1)

1 , and H(2)
1 .

Table V, Panel A summarizes the cross-sectional and time-series fit of the
A2(4) model to the conditional second moments of yields. The layout of the
results is analogous to Table II. The A2(4) model generates lower RMSEs for
the realized variances and covariances (by about six basis points on average)
compared to our baseline specification. At the same time, it also fails more
often in the cross-sectional specification test in regression (16).

For most volatility measurements, the null hypothesis of zero intercept and
slope coefficients is rejected at the 5% level. To understand the difference be-
tween the two models, we note that, relative to our volatility specification in
(3), the A2(4) model has additional parameters that govern the covariance ma-
trix of the yield factors in (32). This allows us to closely match the realized
second moments, including the jagged high-frequency component of their dy-
namics, reducing the RMSEs. However, the results of regression (16) suggest
that this comes at the cost of missing some of the lower-frequency movements
in yield volatility. This property becomes visible in the dynamic fit summa-
rized in Panel B of Table V. Estimating regression (17) for volatility forecast
errors in the A2(4) model, we find that the null hypothesis of all coefficients
being zero is strongly rejected at the one-week horizon, and is rejected at the
5% level in several instances at longer horizons. Different from our baseline
model, which features relatively stable R̄2s across forecast horizons (Table II,
Panel B), adjusted R2s in regressions based on the A2(4) model are high for
the one-week horizon and decline at longer horizons. This is because, as the
forecast horizon increases, the A2(4) model generates forecast errors that are
skewed to the right—a consequence of a fast mean-reversion in the volatility
dynamics. Indeed, Figure 11, which plots the conditional variance forecasts
for the 10-year yield from the baseline model and the A2(4) model, shows that
longer horizon forecasts are less volatile in the latter case.

estimation, thus echoing results in earlier literature. Intuitively, the unrestricted estimation uses
the flexibility provided by volatility factors to fit the cross-section of yields. We also find that
including survey expectations as measurements decreases the fit to volatilities. This suggests that
more than two conditionally Gaussian factors are necessary to describe the first moments of yields.
Here, we focus on the estimation of the A2(4) model that gives the best fit to the conditional second
moments of yields, and leave its extensions to future research. Additional details can be found in
the Internet Appendix.
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Table V
Volatility Fit of the A2(4)

Panel A summarizes the cross-sectional fit to realized variances, realized covariances, and implied
variances by the A2(4) model. Rows (1) and (2) report the RMSEs for realized variances (×104) and
realized volatilities (in basis points). For the few data points where covariances become negative
(seven observations in total across all measurements), to compute the RMSE in row (2) we take the
square root of the absolute value of the measurement. Rows (3) though (5) are based on regression
(16). Row (3) reports p-values testing the null hypothesis that the regression intercept is zero
α0 = 0; row (4) shows p-values for the Wald test of the null that all regression coefficients are
zero (α0, α′

1)′ = 0. ∗ indicates rejection of the null at the 5% level. The Wald test does not use any
adjustment of the parameter covariance matrix. Row (5) provides adjusted R̄2s. Panel B reports
regressions of the model-implied forecast errors specified in equation (17). The forecast errors are
computed for horizons h of one, four, and eight weeks ahead. Row (1) reports p-values testing the
null that the regression intercept is zero β0 = 0; row (2) shows p-values for the Wald test of the null
that all regression coefficients are zero (β0, β ′

1)′ = 0. ∗ indicate rejection of the null at the 5% level.
The Wald test is based on the Newey–West adjustment with h − 1 lags. Row (3) reports adjusted
R̄2s.

Panel A. Cross-Sectional Fit

Realized Implied
Realized Variance Covariance Variance

2Y 3Y 5Y 7Y 10Y 2,5Y 2,10Y 5,10Y 5Y 10Y

(1) RMSE Var
×104

0.63 0.81 0.54 0.34 0.49 0.46 0.32 0.29 0.25 0.19

(2) RMSE Vol
(bps)

20.72 22.45 14.22 11.53 15.98 16.38 13.31 12.67 9.29 8.17

(3) pval
(α0 = 0)

0.00∗ 0.00∗ 0.00∗ 0.01∗ 0.01∗ 0.22 0.75 0.00∗ 0.86 0.12

(4) p-value
(α0, α′

1)′ = 0
0.00∗ 0.00∗ 0.00∗ 0.45 0.39 0.00∗ 0.00∗ 0.02∗ 0.00∗ 0.00∗

(5) R̄2 0.23 0.14 0.05 0.13 0.11 0.15 0.18 0.09 0.26 0.20

Panel B. Dynamic Fit

Realized Variance Realized Covariance

2Y 3Y 5Y 7Y 10Y 2,5Y 2,10Y 5,10Y

h = 1 week
(1) p-value β0 = 0 0.01∗ 0.00∗ 0.02∗ 0.04∗ 0.03∗ 0.11 0.13 0.65
(2) p-value (β0, β ′

1)′ = 0 0.00∗ 0.00∗ 0.00∗ 0.00∗ 0.00∗ 0.00∗ 0.00∗ 0.00∗
(3) R̄2 0.17 0.13 0.13 0.16 0.12 0.16 0.24 0.18

h = 4 weeks
(1) p-value β0 = 0 0.06 0.01∗ 0.08 0.15 0.12 0.19 0.10 0.90
(2) p-value (β0, β ′

1)′ = 0 0.00∗ 0.00∗ 0.06 0.57 0.71 0.00∗ 0.00∗ 0.33
(3) R̄2 0.05 0.04 0.03 0.04 0.04 0.03 0.02 0.03

h = 8 weeks
(1) p-value β0 = 0 0.22 0.12 0.48 0.77 0.70 0.45 0.28 0.66
(2) p-value (β0, β ′

1)′ = 0 0.04∗ 0.10 0.36 0.82 0.90 0.13 0.26 0.79
(3) R̄2 0.03 0.02 0.02 0.04 0.03 0.02 0.01 0.04
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Figure 11. Dynamic fit to the realized variance at different forecast horizons. The figure
presents the model-implied forecasts (solid line) of the realized variance of the 10-year yield at
horizons h of one, four, and eight weeks ahead. The thin line represents the data. The distance
between the two lines measures the size of the forecast error. The left-hand panels present results
for our baseline model; the right-hand panels present results for the A2(4) model.

Another difference between our model and the A2(4) model is in how they
introduce correlations between state variables, and thus between objects within
the yield curve, such as term premia and short-rate expectations. In Section
IV.C, we argue that the correlation between premia and expectations is quite
volatile and can frequently switch signs. In the A2(4) model, for the correlation
between shocks to factors and other model-derived objects to change signs,
the loadings on F (1)

t and F (2)
t need to have opposite signs. While the A2(4)

model generates a conditional correlation between term premium and short-
rate expectations shocks that is low on average (−0.12 across maturities), it is
significantly less variable than that implied by our baseline estimates. With
a sample standard deviation of 0.05, the correlation stays relatively flat over
time and does not display a business cycle pattern.

VII. Conclusions

We decompose the conditional interest rate volatility in the U.S. Treasury
market into volatilities of short-rate expectations, term premia, and their con-
ditional covariance. To this end, we propose a no-arbitrage framework with
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stochastically correlated risks that we estimate with extensive data describing
the dynamics of the second moments of yields. Short-rate expectations are the
main source of volatility at the short end of the term structure, and volatile
term premia dominate at the long end. Shocks to term premia and short-rate
expectations comove in a nontrivial way. Their correlation is close to zero on
average, but it is also quite volatile and varies negatively with the stance of
monetary policy.

We study the behavior of interest rate volatility over the business cycle and
during the recent financial crisis. Over the last two decades, short-rate expec-
tations become increasingly volatile as the economy enters into a recession,
during times of distress in asset markets, and when the Fed eases monetary
policy. While term premium volatility also tends to increase in those episodes,
its reaction is relatively more muted. A case that illustrates the distinct proper-
ties of the term premium and short-rate expectations volatilities is the 2007/09
financial crisis and its aftermath. Our decomposition supports the view that,
during that period, the Fed was successful in reducing the volatility of expecta-
tions about the future path of the short rate, and that the unconventional QE
measures have led to an increase in term-premium volatility.

Our setting allows us to study the compensation for facing yield curve shocks
and volatility shocks in fixed income markets. We find that investors in Trea-
sury bonds are compensated for taking on yield curve risk but are not exposed
to shocks to interest rate volatility. At the same time, the model implies that
investors are willing to pay a large premium for hedging volatility risk though
interest rate derivatives. The main source of the variance risk premium is the
exposure to the variance that arises from fluctuations in short-rate expecta-
tions rather than term premia.

Our analysis can be extended in several directions. In obtaining the above
results we have relied on a reduced-form model. This approach allows us to
study economically well-defined yet endogenous objects—short-rate expecta-
tions and term premia, and their corresponding volatilities. A natural next
step would be to examine the exogenous sources of interest rate volatility, its
relation to macroeconomic fundamentals, and its real and nominal determi-
nants. Our findings can also be used to motivate further study of how financial
markets price monetary policy uncertainty. For instance, to the extent that the
volatility of short-rate expectations can be linked to the Fed’s policy, our results
suggest a nontrivial premium that is earned for selling protection against mon-
etary policy uncertainty. We leave investigation of these and related questions
to future research.
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